Enhancing the Throughput of FT Mass Spectrometry Imaging Using Compressed Sensing and Subspace Modeling

Yuxuan Richard Xie, Daniel Coelho de Castro, S. Rubakhin, J. Sweedler, F. Lam
{"title":"Enhancing the Throughput of FT Mass Spectrometry Imaging Using Compressed Sensing and Subspace Modeling","authors":"Yuxuan Richard Xie, Daniel Coelho de Castro, S. Rubakhin, J. Sweedler, F. Lam","doi":"10.33774/chemrxiv-2021-ks1vf","DOIUrl":null,"url":null,"abstract":"Mass spectrometry imaging (MSI) allows for untargeted mapping of the chemical compositions of tissues with attomole detection limits. MSI using Fourier transform-based mass spectrometers, such as FT-ion cyclotron resonance (FT-ICR), grants the ability to examine the chemical space with unmatched mass resolution and mass accuracy. However, direct imaging of large tissue samples on FT-ICR is restrictively slow. In this work, we present an approach that combines the subspace modeling of ICR temporal signals with compressed sensing to accelerate high-resolution FT-ICR MSI. A joint subspace and sparsity constrained reconstruction enables the creation of high-resolution imaging data from the sparsely sampled and short-time acquired transients. Simulation studies and experimental implementation of the proposed acquisition in investigation of brain tissues demonstrate a factor of 10 enhancement in throughput of FT-ICR MSI, without the need for instrumental or hardware modifications.","PeriodicalId":72565,"journal":{"name":"ChemRxiv : the preprint server for chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv : the preprint server for chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-ks1vf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Mass spectrometry imaging (MSI) allows for untargeted mapping of the chemical compositions of tissues with attomole detection limits. MSI using Fourier transform-based mass spectrometers, such as FT-ion cyclotron resonance (FT-ICR), grants the ability to examine the chemical space with unmatched mass resolution and mass accuracy. However, direct imaging of large tissue samples on FT-ICR is restrictively slow. In this work, we present an approach that combines the subspace modeling of ICR temporal signals with compressed sensing to accelerate high-resolution FT-ICR MSI. A joint subspace and sparsity constrained reconstruction enables the creation of high-resolution imaging data from the sparsely sampled and short-time acquired transients. Simulation studies and experimental implementation of the proposed acquisition in investigation of brain tissues demonstrate a factor of 10 enhancement in throughput of FT-ICR MSI, without the need for instrumental or hardware modifications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用压缩传感和子空间建模提高FT质谱成像的吞吐量
质谱成像(MSI)允许对具有相同检测极限的组织的化学成分进行非靶向映射。MSI使用基于傅立叶变换的质谱仪,如FT离子回旋共振(FT-ICR),能够以无与伦比的质量分辨率和质量精度检查化学空间。然而,在FT-ICR上对大组织样本进行直接成像的速度非常慢。在这项工作中,我们提出了一种将ICR时间信号的子空间建模与压缩传感相结合的方法,以加速高分辨率FT-ICR-MSI。联合子空间和稀疏性约束重建能够从稀疏采样和短时间采集的瞬态中创建高分辨率成像数据。在脑组织研究中,所提出的采集的模拟研究和实验实施表明,在不需要仪器或硬件修改的情况下,FT-ICR-MSI的吞吐量提高了10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chemodivergent Organolanthanide Catalyzed C-H a-Mono-1 Borylation of Azines Thermal aging of heteroatom substituted Keggin type aluminum oxo polycation solutions: Aggregation behavior and impacts on dissolved organic carbon and turbidity removal Bioorthogonal Photo-Catalytic Activation of an Anti-Cancer Prodrug by Riboflavin Energetic basis of excited-state enzyme design and function Electrochemical Ozone Generation Using Compacted High Pressure High Temperature Boron Doped Diamond Microparticle Electrodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1