Jeffrey Stransky , Cheryl Bodnar , Landon Bassett , Matthew Cooper , Daniel Anastasio , Daniel Burkey
{"title":"Engineering process safety research instrument: Assessing students’ moral reasoning in process safety contexts","authors":"Jeffrey Stransky , Cheryl Bodnar , Landon Bassett , Matthew Cooper , Daniel Anastasio , Daniel Burkey","doi":"10.1016/j.ece.2022.11.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>Process safety decision making is a key component of undergraduate chemical engineering<span> education. Despite this, there are no existing survey instruments designed to measure students’ moral reasoning in the context of process safety decision making. The Engineering Process Safety Research Instrument (EPSRI) was developed to address this deficit in process safety assessment. The EPSRI was modeled after existing moral reasoning instruments including the DIT2, EERI, and ESIT. The process safety scenarios included were drawn from personal experience and reports from the Chemical Safety Board. Each scenario in the instrument was followed by a decision prompt and 12–15 considerations. The EPSRI went through content validation with chemical engineering industry practitioners and chemical engineering faculty members. Subsequently, three rounds of exploratory factor analysis were conducted to finalize the instrument design before a final </span></span>confirmatory factor analysis<span> was completed to ensure validity and reliability of the instrument. Completion of the exploratory factor analysis resulted in five dilemmas with 9–12 considerations each that loaded onto pre-conventional, conventional, and post-conventional reasoning constructs according to Kohlberg’s moral development theory. Confirmatory factor analysis reaffirmed the validity and reliability of the instrument and its ability to measure chemical engineering students’ moral reasoning within process safety contexts.</span></p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"42 ","pages":"Pages 44-53"},"PeriodicalIF":3.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772822000306","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
Process safety decision making is a key component of undergraduate chemical engineering education. Despite this, there are no existing survey instruments designed to measure students’ moral reasoning in the context of process safety decision making. The Engineering Process Safety Research Instrument (EPSRI) was developed to address this deficit in process safety assessment. The EPSRI was modeled after existing moral reasoning instruments including the DIT2, EERI, and ESIT. The process safety scenarios included were drawn from personal experience and reports from the Chemical Safety Board. Each scenario in the instrument was followed by a decision prompt and 12–15 considerations. The EPSRI went through content validation with chemical engineering industry practitioners and chemical engineering faculty members. Subsequently, three rounds of exploratory factor analysis were conducted to finalize the instrument design before a final confirmatory factor analysis was completed to ensure validity and reliability of the instrument. Completion of the exploratory factor analysis resulted in five dilemmas with 9–12 considerations each that loaded onto pre-conventional, conventional, and post-conventional reasoning constructs according to Kohlberg’s moral development theory. Confirmatory factor analysis reaffirmed the validity and reliability of the instrument and its ability to measure chemical engineering students’ moral reasoning within process safety contexts.
期刊介绍:
Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning