{"title":"On macrosegregation in a binary alloy undergoing solidification shrinkage","authors":"M. Assunção, M. Vynnycky","doi":"10.1017/s0956792523000050","DOIUrl":null,"url":null,"abstract":"\n The one-dimensional transient solidification of a binary alloy undergoing shrinkage is well-known as an invaluable benchmark for the testing of numerical codes that model macrosegregation. Here, recent work that considered the small-time behaviour of this problem is extended until complete solidification, thereby determining the solute profile across the entire solidified domain. The small-time solution is used as the initial condition for the numerical integration of a problem having three moving boundaries. Of particular significance is the so-called inverse segregation that is observed at the start of solidification, and the extreme segregation that is observed at the end; in the case of the example presented, which is for the often-cited Al–Cu system, the macrosegregation is found to be positive or negative, depending on whether Scheil’s equation or the lever rule is assumed at the microscale, respectively. The relevance of these results for the modelling of steady-state continuous casting processes – in particular, the phenomenon of centreline segregation – is also discussed.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792523000050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The one-dimensional transient solidification of a binary alloy undergoing shrinkage is well-known as an invaluable benchmark for the testing of numerical codes that model macrosegregation. Here, recent work that considered the small-time behaviour of this problem is extended until complete solidification, thereby determining the solute profile across the entire solidified domain. The small-time solution is used as the initial condition for the numerical integration of a problem having three moving boundaries. Of particular significance is the so-called inverse segregation that is observed at the start of solidification, and the extreme segregation that is observed at the end; in the case of the example presented, which is for the often-cited Al–Cu system, the macrosegregation is found to be positive or negative, depending on whether Scheil’s equation or the lever rule is assumed at the microscale, respectively. The relevance of these results for the modelling of steady-state continuous casting processes – in particular, the phenomenon of centreline segregation – is also discussed.