Bi Yu Chen , Yaohong Ma , Jiale Wang , Tao Jia , Xianglong Liu , William H. K. Lam
{"title":"Graph convolutional networks with learnable spatial weightings for traffic forecasting applications","authors":"Bi Yu Chen , Yaohong Ma , Jiale Wang , Tao Jia , Xianglong Liu , William H. K. Lam","doi":"10.1080/23249935.2023.2239377","DOIUrl":null,"url":null,"abstract":"<div><div>How to select a suitable spatial weighting scheme for convolutional graph neural networks (ConvGNNs) is challenging. In this study, we propose a ConvGNN, termed learnable graph convolutional (LGC) network, which learns spatial weightings between a road and its k-hop neighbours as learnable parameters in the spatial convolutional operator. A dynamic LGC (DLGC) network is further proposed to learn the dynamics of spatial weightings by explicitly considering the temporal correlations of spatial weightings at different times of the day. A multi-temporal DLGC (MTDLGC) network is developed for forecasting traffic variables in road networks. Results of case study suggest that the MT-DLGC network can achieve higher prediction accuracy than other state-of-the-art baselines. Both LGC and DLGC networks can be used as general spatial weighting schemes for baselines with better forecasting performance than existing spatial weighting schemes, e.g., graph attention. The source code of this study is available publicly at <span>https://github.com/Mayaohong/MTDLGC</span>.</div></div>","PeriodicalId":48871,"journal":{"name":"Transportmetrica A-Transport Science","volume":"21 1","pages":"Pages 436-465"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica A-Transport Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2324993523001963","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
How to select a suitable spatial weighting scheme for convolutional graph neural networks (ConvGNNs) is challenging. In this study, we propose a ConvGNN, termed learnable graph convolutional (LGC) network, which learns spatial weightings between a road and its k-hop neighbours as learnable parameters in the spatial convolutional operator. A dynamic LGC (DLGC) network is further proposed to learn the dynamics of spatial weightings by explicitly considering the temporal correlations of spatial weightings at different times of the day. A multi-temporal DLGC (MTDLGC) network is developed for forecasting traffic variables in road networks. Results of case study suggest that the MT-DLGC network can achieve higher prediction accuracy than other state-of-the-art baselines. Both LGC and DLGC networks can be used as general spatial weighting schemes for baselines with better forecasting performance than existing spatial weighting schemes, e.g., graph attention. The source code of this study is available publicly at https://github.com/Mayaohong/MTDLGC.
期刊介绍:
Transportmetrica A provides a forum for original discourse in transport science. The international journal''s focus is on the scientific approach to transport research methodology and empirical analysis of moving people and goods. Papers related to all aspects of transportation are welcome. A rigorous peer review that involves editor screening and anonymous refereeing for submitted articles facilitates quality output.