Experimental investigation of the EDM tools coated with nano-alumina film

IF 2.4 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Surface Engineering Pub Date : 2023-04-03 DOI:10.1080/02670844.2023.2235747
Shu-Yu Gui, Huajun Gong, Yijia Sun, Chong Feng
{"title":"Experimental investigation of the EDM tools coated with nano-alumina film","authors":"Shu-Yu Gui, Huajun Gong, Yijia Sun, Chong Feng","doi":"10.1080/02670844.2023.2235747","DOIUrl":null,"url":null,"abstract":"ABSTRACT During electrical discharge machining (EDM) drilling of small high-aspect-ratio holes, abnormal discharges between tool flank and workpiece will result in high process instability and poor shape accuracy. In order to solve this problem, dense nano-alumina insulating film is plated on the tool flank based on atomic layer deposition (ALD) to suppress the secondary discharge for the benefit of the tool’s integrity and shape accuracy. Drilling experiments on nickel base superalloy GH4099 workpiece were conducted to test machining effect of the coated brass tool. Experimental results show that it can enhance the process stability and improve the surface topography of the machined holes. The tool wear is reduced by about 21.7%, and the discharge craters and carbon black film along the tool flank are significantly reduced.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670844.2023.2235747","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT During electrical discharge machining (EDM) drilling of small high-aspect-ratio holes, abnormal discharges between tool flank and workpiece will result in high process instability and poor shape accuracy. In order to solve this problem, dense nano-alumina insulating film is plated on the tool flank based on atomic layer deposition (ALD) to suppress the secondary discharge for the benefit of the tool’s integrity and shape accuracy. Drilling experiments on nickel base superalloy GH4099 workpiece were conducted to test machining effect of the coated brass tool. Experimental results show that it can enhance the process stability and improve the surface topography of the machined holes. The tool wear is reduced by about 21.7%, and the discharge craters and carbon black film along the tool flank are significantly reduced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米氧化铝涂层电火花加工工具的实验研究
摘要在电火花加工(EDM)加工高宽比小孔的过程中,刀面与工件之间的异常放电会导致加工过程的高度不稳定性和形状精度的下降。为了解决这个问题,基于原子层沉积(ALD)在工具侧面镀上致密的纳米氧化铝绝缘膜,以抑制二次放电,从而有利于工具的完整性和形状精度。对GH4099镍基高温合金工件进行了钻孔实验,测试了涂层黄铜刀具的加工效果。实验结果表明,它可以提高加工稳定性,改善加工孔的表面形貌。刀具磨损减少约21.7%,沿刀具侧面的放电坑和炭黑膜显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface Engineering
Surface Engineering 工程技术-材料科学:膜
CiteScore
5.60
自引率
14.30%
发文量
51
审稿时长
2.3 months
期刊介绍: Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.
期刊最新文献
Oil-infused surface on galvanized iron pipes for anti-scaling in industrial applications Surface modification of polyester fabrics using choline hydroxide-catalysed glycolysis Surface modification of cotton The evolution and future of polymer cold spray technology A novel approach of thick coating through selective jet electrodeposition process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1