{"title":"Oxygen vacancy-induced Al2TiO5 –based multifunctional ceramic composites: Electrochemical and optical properties","authors":"Mahdi Hajihashemi, Morteza Shamanian, Fakhreddin Ashrafizadeh","doi":"10.1007/s10832-022-00284-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, Al<sub>2</sub>TiO<sub>5</sub> –based multifunctional ceramics were prepared using the spark plasma sintering method within a temperature range of 1573–1773 K. The influence of the sintering temperature on the microstructure, phase composition, and electrochemical and optical properties of the Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>-Al<sub>2</sub>TiO<sub>5</sub> ceramics was evaluated. The results showed that ceramic composites sintered at T = 1773 K possessed the lowest porosity and optical reflectance (5%) in the visible, UV and infrared wavelength ranges. They were characterized by an average crystallite size of approximately 35 nm and the bandgap of 2.2 eV. Considerable changes in the electronic band structure and density of states inside the bandgap lead to enhanced charge carrier separation and reduced charge transfer resistance (R<sub>CT</sub> = -1.7).</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"48 4","pages":"169 - 182"},"PeriodicalIF":1.7000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10832-022-00284-9.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-022-00284-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 1
Abstract
In this study, Al2TiO5 –based multifunctional ceramics were prepared using the spark plasma sintering method within a temperature range of 1573–1773 K. The influence of the sintering temperature on the microstructure, phase composition, and electrochemical and optical properties of the Al2O3-TiO2-Al2TiO5 ceramics was evaluated. The results showed that ceramic composites sintered at T = 1773 K possessed the lowest porosity and optical reflectance (5%) in the visible, UV and infrared wavelength ranges. They were characterized by an average crystallite size of approximately 35 nm and the bandgap of 2.2 eV. Considerable changes in the electronic band structure and density of states inside the bandgap lead to enhanced charge carrier separation and reduced charge transfer resistance (RCT = -1.7).
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.