Surface/interface engineering of carbon-based catalysts for efficient hydrogen peroxide electrosynthesis

IF 2.7 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Surface Innovations Pub Date : 2022-08-04 DOI:10.1680/jsuin.22.01036
Zhiyuan Sang, Feng Hou, Ziqi Sun, Ji Liang
{"title":"Surface/interface engineering of carbon-based catalysts for efficient hydrogen peroxide electrosynthesis","authors":"Zhiyuan Sang, Feng Hou, Ziqi Sun, Ji Liang","doi":"10.1680/jsuin.22.01036","DOIUrl":null,"url":null,"abstract":"Electrocatalytic two-electron oxygen reduction reaction is an effective, safe and green approach to produce hydrogen peroxide, and the “catalyst-design’’ for highly efficient hydrogen peroxide production has already been reported on various of works. Specially, the modification of the existing catalysts for two-electron oxygen reduction reaction via surface/interface engineering shares huge potential on further enhancing their corresponding catalytic performance, and a detail overview on the research progress of carbon-based electrocatalysts via surface/interface engineering and their intrinsic reaction mechanism is helpful to realize a comprehensive and systematic understanding of the latest progress in this field and further achieving highly efficient hydrogen peroxide electrosynthesis. Herein, fundamental aspects about the 2e−/4e− pathways of oxygen reduction reaction are first introduced. Subsequently, a comprehensive summarization of the current strategies for carbon-based catalysts modification via surface/interface engineering for high selectivity and yield of hydrogen peroxide production is presented. Finally, the prospects and challenges for the hydrogen peroxide production with high efficiency and yield rate are presented, which should shed light on the industrial production and application of hydrogen peroxide.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.22.01036","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Electrocatalytic two-electron oxygen reduction reaction is an effective, safe and green approach to produce hydrogen peroxide, and the “catalyst-design’’ for highly efficient hydrogen peroxide production has already been reported on various of works. Specially, the modification of the existing catalysts for two-electron oxygen reduction reaction via surface/interface engineering shares huge potential on further enhancing their corresponding catalytic performance, and a detail overview on the research progress of carbon-based electrocatalysts via surface/interface engineering and their intrinsic reaction mechanism is helpful to realize a comprehensive and systematic understanding of the latest progress in this field and further achieving highly efficient hydrogen peroxide electrosynthesis. Herein, fundamental aspects about the 2e−/4e− pathways of oxygen reduction reaction are first introduced. Subsequently, a comprehensive summarization of the current strategies for carbon-based catalysts modification via surface/interface engineering for high selectivity and yield of hydrogen peroxide production is presented. Finally, the prospects and challenges for the hydrogen peroxide production with high efficiency and yield rate are presented, which should shed light on the industrial production and application of hydrogen peroxide.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效过氧化氢电合成的碳基催化剂的表面/界面工程
电催化双电子氧还原反应是生产过氧化氢的一种有效、安全和绿色的方法,以及高效过氧化氢生产的“催化剂设计”已经在各种工作中报道。特别是,通过表面/界面工程对现有的双电子氧还原反应催化剂进行改性,在进一步提高其相应的催化性能方面具有巨大的潜力,并详细概述了碳基催化剂的研究进展ed电催化剂通过表面/界面工程及其内在反应机理,有助于全面系统地了解该领域的最新进展,进一步实现高效的过氧化氢电合成。本文首先介绍了氧还原反应的2e−/4e−途径的基本方面。随后,全面总结了目前通过表面/界面工程对碳基催化剂进行改性的策略,以实现过氧化氢生产的高选择性和高产率。最后,介绍了高效高产过氧化氢生产的前景和挑战,为过氧化氢的工业化生产和应用提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface Innovations
Surface Innovations CHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍: The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace. Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.
期刊最新文献
Enhanced photoelectrocatalytic performance of Ti4O7 ceramic electrodes loaded with PbO2 for wastewater degradation Study on UV-cured antimicrobial coatings with epoxy resin quaternary ammonium salt Study of excitation wavelength dependent photoluminescence and electrical conductivity on chemically synthesized metal semiconductor copper oxide nanorods An overview of green and sustainable polymeric coatings Fabrication of TiO2@Cu mesh with impressive hydrophobic surface for electromagnetic interference shielding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1