L. Asyakina, Ekaterina Vorob’eva, L. Proskuryakova, M. Zharko
{"title":"Evaluating extremophilic microorganisms in industrial regions","authors":"L. Asyakina, Ekaterina Vorob’eva, L. Proskuryakova, M. Zharko","doi":"10.21603/2308-4057-2023-1-556","DOIUrl":null,"url":null,"abstract":"Abiotic and biotic stresses have a major impact on crop growth. Stress affects the root system and decreases the amount of nutrients in fruits. Modern agricultural technologies help replace mineral fertilizers with new generation biopreparation. Unlike chemical fertilizers, biofertilizers reduce the risk of adverse environmental impacts. Of special interest are extremophilic microorganisms able to survive in extreme conditions. We aimed to study the phytostimulating ability of extremophilic bacteria isolated from disturbed lands in the coal-mining region. \nWe isolated microorganisms from disturbed lands and studied their cultural, morphological, and biochemical properties. Then, we determined their ability to synthesize indole-3-acetic acids. The extremophilic bacteria were identified and subjected to biocompatibility testing by co-cultivation. Next, we created consortia of pure cultures and analyzed biomass growth. Finally, the biopreparation was experimentally tested on Trifolium prantense L. seeds. \nWe isolated 10 strains of microorganisms that synthesized 4.39 to 16.32 mg/mL of indole-3-acetic acid. The largest amounts of the acid were produced by Pantoea spp., Enterococcus faecium, Leclercia spp., Rothia endophytica, and Klebsiella oxytoca. A consortium of Pantoea spp., E. faecium, and R. endophytica at a ratio of 1:1:1 produced the largest amount of indole-3-acetic acid (15.59 mg/mL) and accumulated maximum biomass. The addition of 0.2% L-tryptophan to the nutrient medium increased the amount of indole-3-acetic acid to 18.45 mg/mL. When the T. prantense L. seeds were soaked in the biopreparation (consortium’s culture fluid) at a concentration of 2.5, the sprouts were 1.4 times longer on the 10th day of growth, compared to the control. \nThe consortium of Pantoea spp., E. faecium, and R. endophytica (1:1:1) stimulated the growth of T. prantense L. seeds. Our findings can be further used to develop biofertilizers for agriculture.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods and Raw Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21603/2308-4057-2023-1-556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Abiotic and biotic stresses have a major impact on crop growth. Stress affects the root system and decreases the amount of nutrients in fruits. Modern agricultural technologies help replace mineral fertilizers with new generation biopreparation. Unlike chemical fertilizers, biofertilizers reduce the risk of adverse environmental impacts. Of special interest are extremophilic microorganisms able to survive in extreme conditions. We aimed to study the phytostimulating ability of extremophilic bacteria isolated from disturbed lands in the coal-mining region.
We isolated microorganisms from disturbed lands and studied their cultural, morphological, and biochemical properties. Then, we determined their ability to synthesize indole-3-acetic acids. The extremophilic bacteria were identified and subjected to biocompatibility testing by co-cultivation. Next, we created consortia of pure cultures and analyzed biomass growth. Finally, the biopreparation was experimentally tested on Trifolium prantense L. seeds.
We isolated 10 strains of microorganisms that synthesized 4.39 to 16.32 mg/mL of indole-3-acetic acid. The largest amounts of the acid were produced by Pantoea spp., Enterococcus faecium, Leclercia spp., Rothia endophytica, and Klebsiella oxytoca. A consortium of Pantoea spp., E. faecium, and R. endophytica at a ratio of 1:1:1 produced the largest amount of indole-3-acetic acid (15.59 mg/mL) and accumulated maximum biomass. The addition of 0.2% L-tryptophan to the nutrient medium increased the amount of indole-3-acetic acid to 18.45 mg/mL. When the T. prantense L. seeds were soaked in the biopreparation (consortium’s culture fluid) at a concentration of 2.5, the sprouts were 1.4 times longer on the 10th day of growth, compared to the control.
The consortium of Pantoea spp., E. faecium, and R. endophytica (1:1:1) stimulated the growth of T. prantense L. seeds. Our findings can be further used to develop biofertilizers for agriculture.
期刊介绍:
The journal «Foods and Raw Materials» is published from 2013. It is published in the English and German languages with periodicity of two volumes a year. The main concern of the journal «Foods and Raw Materials» is informing the scientific community on the works by the researchers from Russia and the CIS, strengthening the world position of the science they represent, showing the results of perspective scientific researches in the food industry and related branches. The main tasks of the Journal consist the publication of scientific research results and theoretical and experimental studies, carried out in the Russian and foreign organizations, as well as on the authors'' personal initiative; bringing together different categories of researchers, university and scientific intelligentsia; to create and maintain a common space of scientific communication, bridging the gap between the publications of regional, federal and international level.