Linear kitchen layout design via machine learning

IF 1.7 3区 工程技术 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing Pub Date : 2022-02-09 DOI:10.1017/S089006042100038X
Jelena Pejić, P. Pejic
{"title":"Linear kitchen layout design via machine learning","authors":"Jelena Pejić, P. Pejic","doi":"10.1017/S089006042100038X","DOIUrl":null,"url":null,"abstract":"Abstract The main objective of this paper is to develop a novel approach for linear kitchen layout design which utilizes information from existing layouts via machine learning algorithms. With the growing popularity of large-scale virtual 3D environments for architectural visualization and the game industry, the manual interior design of virtual scenes becomes prohibitively expensive in terms of time and resources. In our approach, the machine learning model automatically generates layout suggestions. The proposed procedural kitchen generation (PKG) model is a pipeline of six Machine Learning (ML) classifiers that are trained and tested on a kitchen layout dataset created by interior designers. The performances of the model are evaluated for the following classifiers: Random forest, Decision tree, AdaBoost, Naive Bayes, MLP, SVM, and L2 Logistic regression. Random forest, as the best performing classifier is used in the final PKG model, and integrated into Unity Engine for automatic 3D kitchen generation and presentation. The PKG model is evaluated in the quantitative and perceptual study, showing better performance than the prior rule-based method. The perceptual study results demonstrate that our tool can be used to speed up designer's work, improve communication with clients, and educate interior design students.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S089006042100038X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract The main objective of this paper is to develop a novel approach for linear kitchen layout design which utilizes information from existing layouts via machine learning algorithms. With the growing popularity of large-scale virtual 3D environments for architectural visualization and the game industry, the manual interior design of virtual scenes becomes prohibitively expensive in terms of time and resources. In our approach, the machine learning model automatically generates layout suggestions. The proposed procedural kitchen generation (PKG) model is a pipeline of six Machine Learning (ML) classifiers that are trained and tested on a kitchen layout dataset created by interior designers. The performances of the model are evaluated for the following classifiers: Random forest, Decision tree, AdaBoost, Naive Bayes, MLP, SVM, and L2 Logistic regression. Random forest, as the best performing classifier is used in the final PKG model, and integrated into Unity Engine for automatic 3D kitchen generation and presentation. The PKG model is evaluated in the quantitative and perceptual study, showing better performance than the prior rule-based method. The perceptual study results demonstrate that our tool can be used to speed up designer's work, improve communication with clients, and educate interior design students.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的线性厨房布局设计
摘要本文的主要目标是开发一种新的线性厨房布局设计方法,该方法通过机器学习算法利用现有布局中的信息。随着用于建筑可视化和游戏行业的大规模虚拟3D环境的日益普及,虚拟场景的手动室内设计在时间和资源方面变得昂贵得令人望而却步。在我们的方法中,机器学习模型自动生成布局建议。所提出的过程厨房生成(PKG)模型是六个机器学习(ML)分类器的流水线,这些分类器在室内设计师创建的厨房布局数据集上进行训练和测试。对以下分类器的性能进行了评估:随机森林、决策树、AdaBoost、Naive Bayes、MLP、SVM和L2 Logistic回归。随机森林作为性能最好的分类器被用于最终的PKG模型,并集成到Unity Engine中,用于自动生成和呈现3D厨房。PKG模型在定量和感知研究中进行了评估,显示出比先前基于规则的方法更好的性能。感性研究结果表明,我们的工具可以用来加快设计师的工作,改善与客户的沟通,并教育室内设计学生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
14.30%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.
期刊最新文献
Does empathy lead to creativity? A simulation-based investigation on the role of team trait empathy on nominal group concept generation and early concept screening A knowledge-enabled approach for user experience-driven product improvement at the conceptual design stage Free-text inspiration search for systematic bio-inspiration support of engineering design Tool life prediction via SMB-enabled monitor based on BPNN coupling algorithms for sustainable manufacturing A comparative review on the role of stimuli in idea generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1