Shijie Bian, Daniele Grandi, Tianyang Liu, P. Jayaraman, Karl Willis, Elliot T. Salder, Bodia Borijin, Thomas Lu, Richard Otis, Nhut Ho, Bingbing Li
{"title":"HG-CAD: Hierarchical Graph Learning for Material Prediction and Recommendation in CAD","authors":"Shijie Bian, Daniele Grandi, Tianyang Liu, P. Jayaraman, Karl Willis, Elliot T. Salder, Bodia Borijin, Thomas Lu, Richard Otis, Nhut Ho, Bingbing Li","doi":"10.1115/1.4063226","DOIUrl":null,"url":null,"abstract":"\n To enable intelligent CAD design tools, we introduce a machine learning architecture, namely HG-CAD, that supports the automated material prediction and recommendation of assembly bodies through joint learning of body and assembly-level features using a hierarchical graph representation. Specifically, we formulate the material prediction and recommendation process as a node-level classification task over a novel hierarchical graph representation of CAD models, with a low-level graph capturing the body geometry, a high-level graph representing the assembly topology, and a batch-level mask randomization enabling contextual awareness. This enables our network to aggregate geometric and topological features from both the body and assembly levels, leading to superior performance. Qualitative and quantitative evaluation of the proposed architecture on the Fusion 360 Gallery Assembly Dataset demonstrates the feasibility of our approach, outperforming both computer vision and human baselines, while showing promise in application scenarios. The proposed HG-CAD architecture that unifies the processing, encoding, and joint learning of multi-modal CAD features can scale to large repositories, incorporating designers' knowledge into the learning process. These capabilities allow the architecture to serve as a recommendation system for design automation and a baseline for future work.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063226","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
To enable intelligent CAD design tools, we introduce a machine learning architecture, namely HG-CAD, that supports the automated material prediction and recommendation of assembly bodies through joint learning of body and assembly-level features using a hierarchical graph representation. Specifically, we formulate the material prediction and recommendation process as a node-level classification task over a novel hierarchical graph representation of CAD models, with a low-level graph capturing the body geometry, a high-level graph representing the assembly topology, and a batch-level mask randomization enabling contextual awareness. This enables our network to aggregate geometric and topological features from both the body and assembly levels, leading to superior performance. Qualitative and quantitative evaluation of the proposed architecture on the Fusion 360 Gallery Assembly Dataset demonstrates the feasibility of our approach, outperforming both computer vision and human baselines, while showing promise in application scenarios. The proposed HG-CAD architecture that unifies the processing, encoding, and joint learning of multi-modal CAD features can scale to large repositories, incorporating designers' knowledge into the learning process. These capabilities allow the architecture to serve as a recommendation system for design automation and a baseline for future work.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping