A replicated study on the response of spider assemblages to regional and local processes

IF 7.1 1区 环境科学与生态学 Q1 ECOLOGY Ecological Monographs Pub Date : 2022-02-09 DOI:10.1002/ecm.1511
Jörg Müller, Roland Brandl, Marc W. Cadotte, Christoph Heibl, Claus Bässler, Ingmar Weiß, Klaus Birkhofer, Simon Thorn, Sebastian Seibold
{"title":"A replicated study on the response of spider assemblages to regional and local processes","authors":"Jörg Müller,&nbsp;Roland Brandl,&nbsp;Marc W. Cadotte,&nbsp;Christoph Heibl,&nbsp;Claus Bässler,&nbsp;Ingmar Weiß,&nbsp;Klaus Birkhofer,&nbsp;Simon Thorn,&nbsp;Sebastian Seibold","doi":"10.1002/ecm.1511","DOIUrl":null,"url":null,"abstract":"<p>Understanding species richness variation among local communities is one of the central topics in ecology, but the complex interplay of regional processes, environmental filtering, and local processes hampers generalization on the importance of different processes. Here, we aim to unravel drivers of spider community assembly in temperate forests by analyzing two independent data sets covering gradients in elevation and forest succession. We test the following four hypotheses: (H1) spider assemblages within a region are limited by dispersal, (H2) local environment has a dominant influence on species composition and (H3) resources, and (H4) biotic interactions both affect species richness patterns. In a comprehensive approach, we studied species richness, abundance, taxonomic composition, and trait-phylogenetic dissimilarity of assemblages. The decrease in taxonomic similarity with increasing spatial distance was very weak, failing to support H1. Functional clustering of species in general and with canopy openness strongly supported H2. Moreover, this hypothesis was supported by a positive correlation between environmental and taxonomic similarity and by an increase in abundance with canopy openness. Resource determination of species richness (H3) could be confirmed only by the decrease of species richness with canopy cover. Finally, decreasing species richness with functional clustering indicating effects of biotic interactions (H4) could only be found in one analysis and only in one data set. In conclusion, our findings indicate that spider assemblages within a region are mainly determined by local environmental conditions, while resource availability, biotic interactions and dispersal play a minor role. Our approach shows that both the analysis of different aspects of species diversity and replication of community studies are necessary to identify the complex interplay of processes forming local assemblages.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 3","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1511","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1511","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Understanding species richness variation among local communities is one of the central topics in ecology, but the complex interplay of regional processes, environmental filtering, and local processes hampers generalization on the importance of different processes. Here, we aim to unravel drivers of spider community assembly in temperate forests by analyzing two independent data sets covering gradients in elevation and forest succession. We test the following four hypotheses: (H1) spider assemblages within a region are limited by dispersal, (H2) local environment has a dominant influence on species composition and (H3) resources, and (H4) biotic interactions both affect species richness patterns. In a comprehensive approach, we studied species richness, abundance, taxonomic composition, and trait-phylogenetic dissimilarity of assemblages. The decrease in taxonomic similarity with increasing spatial distance was very weak, failing to support H1. Functional clustering of species in general and with canopy openness strongly supported H2. Moreover, this hypothesis was supported by a positive correlation between environmental and taxonomic similarity and by an increase in abundance with canopy openness. Resource determination of species richness (H3) could be confirmed only by the decrease of species richness with canopy cover. Finally, decreasing species richness with functional clustering indicating effects of biotic interactions (H4) could only be found in one analysis and only in one data set. In conclusion, our findings indicate that spider assemblages within a region are mainly determined by local environmental conditions, while resource availability, biotic interactions and dispersal play a minor role. Our approach shows that both the analysis of different aspects of species diversity and replication of community studies are necessary to identify the complex interplay of processes forming local assemblages.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蜘蛛组合对区域和局部过程响应的重复研究
了解物种丰富度在地方群落之间的变化是生态学的中心议题之一,但区域过程、环境过滤和局部过程的复杂相互作用阻碍了对不同过程重要性的概括。本文通过分析两个独立的数据集,包括海拔梯度和森林演替梯度,揭示温带森林蜘蛛群落聚集的驱动因素。我们检验了以下四个假设:(H1)蜘蛛在一个区域内的组合受到分散的限制,(H2)当地环境对物种组成和(H3)资源有主导影响,(H4)生物相互作用都影响物种丰富度格局。我们综合研究了植物组合的物种丰富度、丰度、分类组成和性状-系统发育差异。随着空间距离的增加,分类相似性的下降非常微弱,不能支持H1。一般和冠层开度的物种功能聚类强烈支持H2。此外,环境相似性和分类相似性之间的正相关关系以及冠层开度对丰度的影响也支持了这一假设。物种丰富度(H3)的资源确定只能通过物种丰富度随冠层覆盖的减少来确定。最后,物种丰富度的下降和功能聚类表明生物相互作用的影响(H4)只在一个分析中发现,并且只在一个数据集中发现。综上所述,蜘蛛在一个区域内的聚集主要取决于当地的环境条件,而资源可用性、生物相互作用和分散则起次要作用。我们的方法表明,对物种多样性的不同方面的分析和群落研究的复制对于确定形成局部组合的过程的复杂相互作用是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Monographs
Ecological Monographs 环境科学-生态学
CiteScore
12.20
自引率
0.00%
发文量
61
审稿时长
3 months
期刊介绍: The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology. Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message. Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology. Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions. In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.
期刊最新文献
Cover Image Issue Information Climate and management changes over 40 years drove more stress-tolerant and less ruderal weed communities in vineyards The primacy of density-mediated indirect effects in a community of wolves, elk, and aspen Understanding the chemodiversity of plants: Quantification, variation and ecological function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1