Theoretical analysis of passive rail grinding

IF 0.4 Q4 METALLURGY & METALLURGICAL ENGINEERING Obrabotka Metallov-Metal Working and Material Science Pub Date : 2022-09-15 DOI:10.17212/1994-6309-2022-24.3-22-39
A. Ilinykh, V. Banul, D. Vorontsov
{"title":"Theoretical analysis of passive rail grinding","authors":"A. Ilinykh, V. Banul, D. Vorontsov","doi":"10.17212/1994-6309-2022-24.3-22-39","DOIUrl":null,"url":null,"abstract":"Introduction. There are different rail machining technologies designed to eliminate defects on the tread surface and extend the life cycle of rails. The most used is the technology of grinding rails with rotating grinding wheels using rail-grinding trains. Its main disadvantage is the low working speed of the grinding train that requires the organization of track possessions with stopping the movement of trains along the haul. To perform preventive rail grinding with minimal metal removal from the rail head, passive grinding technologies using grinding wheels have become widespread in last years. Passive grinding is when there is no power on the grinding wheel to rotate it actively. Such methods make it possible to achieve high speeds of the grinding train, and the work can be carried out in the train schedule without closing the stage. Currently, passive grinding technologies are relatively new and do not have the necessary scientific basis for optimizing the machining process. The aim of the work is to perform theoretical studies of kinematic and force analyzes of two methods of rail passive grinding: the periphery and the end face of the grinding wheel. Methodology of the work is kinematic and power calculations of rail grinding schemes. Results and discussion. Within the framework of theoretical studies, a kinematic and force analysis of two methods of passive grinding are carried out, on the basis of which the optimal conditions for its implementation are determined. It is established that the method of passive grinding by the periphery of the wheel has a 20 % higher productivity and energy efficiency of the process before end passive grinding due to the higher rotation speed of the grinding wheel with equal forces of pressing it to the rail. At the same time, passive grinding with the end of the wheel is distinguished by a twice greater range of change in both the speed of the grinding wheel rotation and the force of its pressing that makes it possible to achieve greater metal removal at equal speeds of the grinding trains. In conclusion, promising tasks for further research in the field of passive rail grinding are formulated.","PeriodicalId":42889,"journal":{"name":"Obrabotka Metallov-Metal Working and Material Science","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Obrabotka Metallov-Metal Working and Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/1994-6309-2022-24.3-22-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

Introduction. There are different rail machining technologies designed to eliminate defects on the tread surface and extend the life cycle of rails. The most used is the technology of grinding rails with rotating grinding wheels using rail-grinding trains. Its main disadvantage is the low working speed of the grinding train that requires the organization of track possessions with stopping the movement of trains along the haul. To perform preventive rail grinding with minimal metal removal from the rail head, passive grinding technologies using grinding wheels have become widespread in last years. Passive grinding is when there is no power on the grinding wheel to rotate it actively. Such methods make it possible to achieve high speeds of the grinding train, and the work can be carried out in the train schedule without closing the stage. Currently, passive grinding technologies are relatively new and do not have the necessary scientific basis for optimizing the machining process. The aim of the work is to perform theoretical studies of kinematic and force analyzes of two methods of rail passive grinding: the periphery and the end face of the grinding wheel. Methodology of the work is kinematic and power calculations of rail grinding schemes. Results and discussion. Within the framework of theoretical studies, a kinematic and force analysis of two methods of passive grinding are carried out, on the basis of which the optimal conditions for its implementation are determined. It is established that the method of passive grinding by the periphery of the wheel has a 20 % higher productivity and energy efficiency of the process before end passive grinding due to the higher rotation speed of the grinding wheel with equal forces of pressing it to the rail. At the same time, passive grinding with the end of the wheel is distinguished by a twice greater range of change in both the speed of the grinding wheel rotation and the force of its pressing that makes it possible to achieve greater metal removal at equal speeds of the grinding trains. In conclusion, promising tasks for further research in the field of passive rail grinding are formulated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钢轨被动磨削的理论分析
介绍有不同的钢轨加工技术旨在消除踏面上的缺陷,延长钢轨的使用寿命。最常用的是使用钢轨打磨列车用旋转砂轮打磨钢轨的技术。其主要缺点是研磨列车的工作速度低,需要组织轨道占用,同时停止列车沿运输路线的移动。为了在轨头金属去除量最小的情况下进行预防性钢轨磨削,近年来,使用砂轮的被动磨削技术已经广泛应用。被动研磨是指砂轮上没有动力主动旋转的情况。这样的方法可以实现研磨列车的高速,并且可以在不关闭阶段的情况下在列车时刻表中进行工作。目前,被动磨削技术相对较新,不具备优化加工工艺的必要科学依据。本工作的目的是对钢轨被动磨削的两种方法:砂轮的外周面和端面进行运动学和力分析的理论研究。工作方法是轨道磨削方案的运动学和功率计算。结果和讨论。在理论研究的框架内,对两种被动磨削方法进行了运动学和力分析,并在此基础上确定了实施被动磨削的最佳条件。已经确定,通过砂轮周边进行被动磨削的方法在端部被动磨削之前具有20%的生产率和能源效率,这是由于砂轮在将其压到轨道上的力相等的情况下具有更高的转速。同时,用砂轮末端进行被动磨削的区别在于砂轮旋转速度和挤压力的变化范围大两倍,这使得可以在相同的磨削速度下实现更大的金属去除。总之,提出了在被动钢轨磨削领域进一步研究的有希望的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Obrabotka Metallov-Metal Working and Material Science
Obrabotka Metallov-Metal Working and Material Science METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.10
自引率
50.00%
发文量
26
期刊最新文献
Free vibration and mechanical behavior of treated woven jute polymer composite Analysis of mechanical behavior and free vibration characteristics of treated Saccharum munja fiber polymer composite Synthesis of Ti–Fe intermetallic compounds from elemental powders mixtures The concept of microsimulation of processes of joining dissimilar materials by plastic deformation Experimental studies of high-speed grinding rails modes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1