{"title":"Searches for Heavy Resonances with Substructure","authors":"P. Maksimovic","doi":"10.1146/annurev-nucl-102419-055402","DOIUrl":null,"url":null,"abstract":"In the past decade, the Large Hadron Collider (LHC) has probed a higher energy scale than ever before. Most models of physics beyond the standard model (BSM) predict the production of new heavy particles; the LHC results have excluded lower masses of such particles. This makes the high-mass regions especially interesting for current and future searches. In most BSM scenarios of interest, the new heavy resonances decay to standard model particles. In a subset of these models, the new particles have large couplings to the top quark, the W and Z bosons, or the Higgs boson. The top quark and W, Z, and Higgs bosons often decay to quarks, giving rise to jets of particles with substructure; event selection based on substructure is used to suppress standard model backgrounds. This review covers the key concepts in experimental searches based on the jet substructure and discusses recent results from the ATLAS and CMS experiments. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 72 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-102419-055402","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 2
Abstract
In the past decade, the Large Hadron Collider (LHC) has probed a higher energy scale than ever before. Most models of physics beyond the standard model (BSM) predict the production of new heavy particles; the LHC results have excluded lower masses of such particles. This makes the high-mass regions especially interesting for current and future searches. In most BSM scenarios of interest, the new heavy resonances decay to standard model particles. In a subset of these models, the new particles have large couplings to the top quark, the W and Z bosons, or the Higgs boson. The top quark and W, Z, and Higgs bosons often decay to quarks, giving rise to jets of particles with substructure; event selection based on substructure is used to suppress standard model backgrounds. This review covers the key concepts in experimental searches based on the jet substructure and discusses recent results from the ATLAS and CMS experiments. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 72 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation.
One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.