Comparison of machine learning models for breast cancer diagnosis

Rania R. Kadhim, Mohammed Y. Kamil
{"title":"Comparison of machine learning models for breast cancer diagnosis","authors":"Rania R. Kadhim, Mohammed Y. Kamil","doi":"10.11591/ijai.v12.i1.pp415-421","DOIUrl":null,"url":null,"abstract":"Breast cancer is the most common cause of death among women worldwide. Breast cancer can be detected early, and the death rate can be reduced. Machine learning techniques are a hot topic for study and have proved influential in cancer prediction and early diagnosis. This study's objective is to predict and diagnose breast cancer using machine learning models and evaluate the most effective based on six criteria: specificity, sensitivity, precision, accuracy, F1-score and receiver operating characteristic curve. All work is done in the anaconda environment, which uses Python's NumPy and SciPy numerical and scientific libraries, and pandas and matplotlib. This study used the Wisconsin diagnostic breast cancer dataset to test ten machine learning algorithms: decision tree, linear discriminant analysis, forests of randomized trees, gradient boosting, passive aggressive, logistic regression, naïve Bayes, nearest centroid, support vector machine, and perceptron. After collecting the findings, we performed a performance evaluation and compared these various classification techniques. Gradient boosting model outperformed all other algorithms, scoring 96.77% on the F1-score.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i1.pp415-421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 6

Abstract

Breast cancer is the most common cause of death among women worldwide. Breast cancer can be detected early, and the death rate can be reduced. Machine learning techniques are a hot topic for study and have proved influential in cancer prediction and early diagnosis. This study's objective is to predict and diagnose breast cancer using machine learning models and evaluate the most effective based on six criteria: specificity, sensitivity, precision, accuracy, F1-score and receiver operating characteristic curve. All work is done in the anaconda environment, which uses Python's NumPy and SciPy numerical and scientific libraries, and pandas and matplotlib. This study used the Wisconsin diagnostic breast cancer dataset to test ten machine learning algorithms: decision tree, linear discriminant analysis, forests of randomized trees, gradient boosting, passive aggressive, logistic regression, naïve Bayes, nearest centroid, support vector machine, and perceptron. After collecting the findings, we performed a performance evaluation and compared these various classification techniques. Gradient boosting model outperformed all other algorithms, scoring 96.77% on the F1-score.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
癌症诊断的机器学习模型比较
癌症是全世界女性最常见的死亡原因。癌症可以早期发现,死亡率可以降低。机器学习技术是研究的热点,已被证明在癌症预测和早期诊断方面具有重要影响。本研究的目的是使用机器学习模型预测和诊断癌症,并基于六个标准评估最有效的方法:特异性、敏感性、精确性、准确性、F1评分和受试者操作特征曲线。所有工作都是在anaconda环境中完成的,该环境使用Python的NumPy和SciPy数字和科学库,以及panda和matplotlib。本研究使用威斯康星乳腺癌症诊断数据集测试了十种机器学习算法:决策树、线性判别分析、随机树森林、梯度增强、被动攻击、逻辑回归、幼稚贝叶斯、最近质心、支持向量机和感知器。在收集了这些发现之后,我们进行了性能评估,并比较了这些不同的分类技术。梯度增强模型的表现优于所有其他算法,F1得分为96.77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
期刊最新文献
Traffic light counter detection comparison using you only look oncev3 and you only look oncev5 for version 3 and 5 Eligibility of village fund direct cash assistance recipients using artificial neural network Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm Glove based wearable devices for sign language-GloSign Hybrid travel time estimation model for public transit buses using limited datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1