Simultaneous feedback control of toroidal magnetic field and plasma current on MST using advanced programmable power supplies

IF 1.3 Q3 ORTHOPEDICS Plasma Research Express Pub Date : 2020-05-28 DOI:10.1088/2516-1067/abb4c2
I R Goumiri, K. McCollam, A. Squitieri, D J Holly, J. Sarff, S P Leblanc
{"title":"Simultaneous feedback control of toroidal magnetic field and plasma current on MST using advanced programmable power supplies","authors":"I R Goumiri, K. McCollam, A. Squitieri, D J Holly, J. Sarff, S P Leblanc","doi":"10.1088/2516-1067/abb4c2","DOIUrl":null,"url":null,"abstract":"Programmable control of the inductive electric field enables advanced operations of reversed-field pinch (RFP) plasmas in the Madison Symmetric Torus (MST) device and further develops the technical basis for ohmically heated fusion RFP plasmas. MST’s poloidal and toroidal magnetic fields (B p and B t) can be sourced by programmable power supplies (PPSs) based on integrated-gate bipolar transistors (IGBT). In order to provide real-time simultaneous control of both B p and B t circuits, a time-independent integrated model is developed. The actuators considered for the control are the B p and B t primary currents produced by the PPSs. The control system goal will be tracking two particular demand quantities that can be measured at the plasma surface (r = a): the plasma current, I p ∼ B p(a), and the RFP reversal parameter, F ∼ B t(a)/Φ, where Φ is the toroidal flux in the plasma. The edge safety factor, q(a) ∝ B t (a), tends to track F but not identically. To understand the responses of I p and F to the actuators and to enable systematic design of control algorithms, dedicated experiments are run in which the actuators are modulated, and a linearized dynamic data-driven model is generated using a system identification method. We perform a series of initial real-time experiments to test the designed feedback controllers and validate the derived model predictions. The feedback controllers show systematic improvements over simpler feedforward controllers.","PeriodicalId":36295,"journal":{"name":"Plasma Research Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1067/abb4c2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 2

Abstract

Programmable control of the inductive electric field enables advanced operations of reversed-field pinch (RFP) plasmas in the Madison Symmetric Torus (MST) device and further develops the technical basis for ohmically heated fusion RFP plasmas. MST’s poloidal and toroidal magnetic fields (B p and B t) can be sourced by programmable power supplies (PPSs) based on integrated-gate bipolar transistors (IGBT). In order to provide real-time simultaneous control of both B p and B t circuits, a time-independent integrated model is developed. The actuators considered for the control are the B p and B t primary currents produced by the PPSs. The control system goal will be tracking two particular demand quantities that can be measured at the plasma surface (r = a): the plasma current, I p ∼ B p(a), and the RFP reversal parameter, F ∼ B t(a)/Φ, where Φ is the toroidal flux in the plasma. The edge safety factor, q(a) ∝ B t (a), tends to track F but not identically. To understand the responses of I p and F to the actuators and to enable systematic design of control algorithms, dedicated experiments are run in which the actuators are modulated, and a linearized dynamic data-driven model is generated using a system identification method. We perform a series of initial real-time experiments to test the designed feedback controllers and validate the derived model predictions. The feedback controllers show systematic improvements over simpler feedforward controllers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用先进的可编程电源实现MST上环形磁场和等离子体电流的同时反馈控制
感应电场的可编程控制实现了麦迪逊对称圆环(MST)装置中反向场箍缩(RFP)等离子体的高级操作,并进一步发展了欧姆加热聚变RFP等离子体的技术基础。MST的极向和环形磁场(Bp和Bt)可以由基于集成栅双极晶体管(IGBT)的可编程电源(PPS)提供。为了提供对Bp和Bt电路的实时同时控制,开发了一个与时间无关的集成模型。考虑用于控制的致动器是PPS产生的Bp和Bt初级电流。控制系统的目标是跟踪可以在等离子体表面测量的两个特定需求量(r=a):等离子体电流I p~B p(a)和RFP反转参数F~B t(a)/Φ,其中Φ是等离子体中的环形通量。边缘安全系数q(a)ŞB t(a)倾向于跟踪F,但不完全相同。为了理解I p和F对致动器的响应,并实现控制算法的系统设计,进行了专门的实验,其中对致动器进行了调制,并使用系统识别方法生成了线性化的动态数据驱动模型。我们进行了一系列初始实时实验,以测试设计的反馈控制器,并验证导出的模型预测。反馈控制器比简单的前馈控制器有系统的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Research Express
Plasma Research Express Energy-Nuclear Energy and Engineering
CiteScore
2.60
自引率
0.00%
发文量
15
期刊最新文献
Study of cylindrical and spherical dust acoustic solitons and quasiperiodic structures in a quantum dusty plasma Activation of water in the downstream of low-pressure ammonia plasma discharge Hydroxyl radical dynamics in a gliding arc discharge using high-speed PLIF imaging 6D phase space collective modes in Vlasov-Maxwell system Two stream instabilities in unmagnetized nonrelativistic quantum plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1