{"title":"Tunable Aharonov-Bohm cages through anti-PT-symmetric imaginary couplings","authors":"S. M. Zhang, H. Xu, L. Jin","doi":"10.1103/PhysRevA.108.023518","DOIUrl":null,"url":null,"abstract":"The Aharonov-Bohm (AB) cage enables localized confinement with nondiffractive propagation for arbitrary excitation. In this study, we introduce an anti-parity-time (anti-$\\mathcal{PT}$) symmetric imaginary coupling in a generalized Creutz ladder to construct a non-Hermitian AB cage with tunable flat-band energy. We investigate compact localized states and complete localization dynamics, and show that non-Hermiticity affects the localization probability distributions and increases the oscillation period of the AB cage dynamics. Non-Hermitian engineering of the decoupled core of the AB cage is the essential point in our proposal. Our approach is widely applicable to a more general situation and can facilitate the manipulation of localization in physics.","PeriodicalId":48702,"journal":{"name":"Physical Review a","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review a","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevA.108.023518","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Aharonov-Bohm (AB) cage enables localized confinement with nondiffractive propagation for arbitrary excitation. In this study, we introduce an anti-parity-time (anti-$\mathcal{PT}$) symmetric imaginary coupling in a generalized Creutz ladder to construct a non-Hermitian AB cage with tunable flat-band energy. We investigate compact localized states and complete localization dynamics, and show that non-Hermiticity affects the localization probability distributions and increases the oscillation period of the AB cage dynamics. Non-Hermitian engineering of the decoupled core of the AB cage is the essential point in our proposal. Our approach is widely applicable to a more general situation and can facilitate the manipulation of localization in physics.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics