{"title":"Reliability Modeling of Mutual DCFP Considering Failure Physical Dependency","authors":"Ying Chen;Tianyu Yang;Yanfang Wang","doi":"10.23919/JSEE.2023.000108","DOIUrl":null,"url":null,"abstract":"Degradation and overstress failures occur in many electronic systems in which the operation load and environmental conditions are complex. The dependency of them called dependent competing failure process (DCFP), has been widely studied. Electronic system may experience mutual effects of degradation and shocks, they are considered to be interdependent. Both the degradation and the shock processes will decrease the limit of system and cause cumulative effect. Finally, the competition of hard and soft failure will cause the system failure. Based on the failure mechanism accumulation theory, this paper constructs the shock-degradation acceleration and the threshold descent model, and a system reliability model established by using these two models. The mutually DCFP effect of electronic system interaction has been decomposed into physical correlation of failure, including acceleration, accumulation and competition. As a case, a reliability of electronic system in aeronautical system has been analyzed with the proposed method. The method proposed is based on failure physical evaluation, and could provide important reference for quantitative evaluation and design improvement of the newly designed system in case of data deficiency.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"34 4","pages":"1063-1073"},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971804/10241333/10241321.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10241321/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Degradation and overstress failures occur in many electronic systems in which the operation load and environmental conditions are complex. The dependency of them called dependent competing failure process (DCFP), has been widely studied. Electronic system may experience mutual effects of degradation and shocks, they are considered to be interdependent. Both the degradation and the shock processes will decrease the limit of system and cause cumulative effect. Finally, the competition of hard and soft failure will cause the system failure. Based on the failure mechanism accumulation theory, this paper constructs the shock-degradation acceleration and the threshold descent model, and a system reliability model established by using these two models. The mutually DCFP effect of electronic system interaction has been decomposed into physical correlation of failure, including acceleration, accumulation and competition. As a case, a reliability of electronic system in aeronautical system has been analyzed with the proposed method. The method proposed is based on failure physical evaluation, and could provide important reference for quantitative evaluation and design improvement of the newly designed system in case of data deficiency.