Characterization and in vitro Biocompatibility of Binary Mixtures of Chitosan and Polyurethanes Synthesized from Chemically Modified Castor Oil, as Materials for Medical Use
Fabián R. Arévalo, Sonia A. Osorio, Nathaly A. Valcárcel, Jeimmy C. Ibarra, M. Valero
{"title":"Characterization and in vitro Biocompatibility of Binary Mixtures of Chitosan and Polyurethanes Synthesized from Chemically Modified Castor Oil, as Materials for Medical Use","authors":"Fabián R. Arévalo, Sonia A. Osorio, Nathaly A. Valcárcel, Jeimmy C. Ibarra, M. Valero","doi":"10.1177/204124791800900102","DOIUrl":null,"url":null,"abstract":"This study aimed to evaluate the effect of the incorporation of chitosan into polyurethane matrices synthesized from chemically modified castor (Ricinus communis) oil by transesterification with pentaerythritol. An additional aim of this study was to determine the degree of acceptance as a biomaterial (obtained from renewable sources), based on the analysis of its mechanical properties (stress/rupture strain), hydrophilic character (contact angle), morphology (SEM) and in vitro compatibility of polyurethanes when in contact with mouse fibroblast L929 cells. No significant changes in mechanical properties were observed with the addition of chitosan to polyurethanes synthesized from chemically modified castor oil. All polyurethane formulas showed morphological changes with increased chitosan concentration. As chitosan/polyurethane binary mixtures do not present a cytotoxicity risk for L929 mouse fibroblasts and possess similar mechanical properties to soft and cardiovascular tissues, their use as a biomedical material is suggested.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/204124791800900102","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/204124791800900102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 6
Abstract
This study aimed to evaluate the effect of the incorporation of chitosan into polyurethane matrices synthesized from chemically modified castor (Ricinus communis) oil by transesterification with pentaerythritol. An additional aim of this study was to determine the degree of acceptance as a biomaterial (obtained from renewable sources), based on the analysis of its mechanical properties (stress/rupture strain), hydrophilic character (contact angle), morphology (SEM) and in vitro compatibility of polyurethanes when in contact with mouse fibroblast L929 cells. No significant changes in mechanical properties were observed with the addition of chitosan to polyurethanes synthesized from chemically modified castor oil. All polyurethane formulas showed morphological changes with increased chitosan concentration. As chitosan/polyurethane binary mixtures do not present a cytotoxicity risk for L929 mouse fibroblasts and possess similar mechanical properties to soft and cardiovascular tissues, their use as a biomedical material is suggested.
期刊介绍:
Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.