Molecular Dynamics Study of Interactions between the Water/ice Interface and a Nanoparticle in the Vicinity of a Solid Surface

IF 2.7 3区 工程技术 Q2 ENGINEERING, MECHANICAL Nanoscale and Microscale Thermophysical Engineering Pub Date : 2020-04-02 DOI:10.1080/15567265.2020.1765912
S. Uchida, K. Fujiwara, M. Shibahara
{"title":"Molecular Dynamics Study of Interactions between the Water/ice Interface and a Nanoparticle in the Vicinity of a Solid Surface","authors":"S. Uchida, K. Fujiwara, M. Shibahara","doi":"10.1080/15567265.2020.1765912","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, non-equilibrium molecular dynamics simulations were conducted for a coexistence system of water and ice on a wall surface with a single nanoparticle to reveal the effects of water solidification on the nanoparticle in the vicinity of a wall surface. We further investigated the effect of the presence and size of particles on the density profile of water in the vicinity of the wall surface and the force acting on particles from water molecules, when the solidification interface contacted the wall and the particles. The results revealed that a strong mutual influence exists between the solidification interface and the nanoparticle on the wall’s surface; the nanoparticle on the wall prevents water solidification in proximity to the wall. Moreover, the force acting on the nanoparticle from water molecules changes as the solidification interface approaches; the cooling temperature is shown to affect the direction of this force. It indicates that the solidification process is a key influential factor which affects nanoparticle movements on a wall surface at molecular scales.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"24 1","pages":"53 - 65"},"PeriodicalIF":2.7000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2020.1765912","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2020.1765912","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 4

Abstract

ABSTRACT In this study, non-equilibrium molecular dynamics simulations were conducted for a coexistence system of water and ice on a wall surface with a single nanoparticle to reveal the effects of water solidification on the nanoparticle in the vicinity of a wall surface. We further investigated the effect of the presence and size of particles on the density profile of water in the vicinity of the wall surface and the force acting on particles from water molecules, when the solidification interface contacted the wall and the particles. The results revealed that a strong mutual influence exists between the solidification interface and the nanoparticle on the wall’s surface; the nanoparticle on the wall prevents water solidification in proximity to the wall. Moreover, the force acting on the nanoparticle from water molecules changes as the solidification interface approaches; the cooling temperature is shown to affect the direction of this force. It indicates that the solidification process is a key influential factor which affects nanoparticle movements on a wall surface at molecular scales.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固体表面附近纳米颗粒与水/冰界面相互作用的分子动力学研究
摘要在本研究中,对具有单个纳米颗粒的壁面水和冰共存系统进行了非平衡分子动力学模拟,以揭示水固化对壁面附近纳米颗粒的影响。我们进一步研究了当凝固界面接触壁和颗粒时,颗粒的存在和大小对壁表面附近水的密度分布的影响,以及水分子作用在颗粒上的力。结果表明,凝固界面与壁面上的纳米颗粒之间存在较强的相互影响;壁上的纳米颗粒防止水在壁附近固化。此外,水分子作用在纳米颗粒上的力随着固化界面的接近而变化;冷却温度被显示为影响该力的方向。这表明固化过程是影响纳米颗粒在分子尺度上在壁面上运动的关键影响因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale and Microscale Thermophysical Engineering
Nanoscale and Microscale Thermophysical Engineering 工程技术-材料科学:表征与测试
CiteScore
5.90
自引率
2.40%
发文量
12
审稿时长
3.3 months
期刊介绍: Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation. The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as: transport and interactions of electrons, phonons, photons, and spins in solids, interfacial energy transport and phase change processes, microscale and nanoscale fluid and mass transport and chemical reaction, molecular-level energy transport, storage, conversion, reaction, and phase transition, near field thermal radiation and plasmonic effects, ultrafast and high spatial resolution measurements, multi length and time scale modeling and computations, processing of nanostructured materials, including composites, micro and nanoscale manufacturing, energy conversion and storage devices and systems, thermal management devices and systems, microfluidic and nanofluidic devices and systems, molecular analysis devices and systems.
期刊最新文献
Mesoscopic Study on Effective Thermal Conductivity of Aerogel Based on a Modified LBM Thermoelectric Phenomena in a Magnetic Heterostructure with AAH Modulation: Charge and Spin Figure of Merits Coupling of Surface Plasmon Polaritons and Hyperbolic Phonon Polaritons on the Near-Field Radiative Heat Transfer Between Multilayer Graphene/hBN Structures Thermodynamic control the self-assembled formation of vertically aligned nanocomposite thin film Elasto-Thermodiffusive Microtemperature Model Induced by a Mechanical Ramp-Type of Nanoscale Photoexcited Semiconductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1