Enhanced termination of zinc and cadmium ions from wastewater employing plain and chitosan-modified mxenes: synthesis, characterization, and adsorption performance

IF 9.1 Q1 ENGINEERING, CHEMICAL Green Chemical Engineering Pub Date : 2023-08-22 DOI:10.1016/j.gce.2023.08.003
{"title":"Enhanced termination of zinc and cadmium ions from wastewater employing plain and chitosan-modified mxenes: synthesis, characterization, and adsorption performance","authors":"","doi":"10.1016/j.gce.2023.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Zinc and cadmium pollutants cause a significant environmental effect that cannot be ignored. Due to their considerable amount in an aqueous environment, industries are seeking suitable adsorbents that are environmentally friendly and inexpensive for removing metals from wastewater before disposing of them in surface waters. This research employed original MXene (MX) and chitosan-modified MXene (CSMX) to extract zinc (Zn(II)) and cadmium (Cd(II)) metal ions from water-based solutions. The composite material produced was analyzed using techniques such as X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET). The effects of contact duration, pH of the solution, and initial concentration of metal ions on the adsorption process of Zn(II) and Cd(II) onto both MX and CSMX composites were investigated. MX and prepared CSMX composite presented a high adsorption capacity for both studied heavy metals, which were 91.55 and 73.82 mg/g for Zn(II) and Cd(II) onto MX, 106.84 and 93.07 mg/g for Cd(II) and Zn(II) onto CSMX composite, respectively. Furthermore, the maximum competitive adsorption capacities for Zn(II) onto MX and CSMX composites are 77.29 and 93.47 mg/g, and for are Cd(II) 60.30 and 79.66 mg/g, respectively. Hence, the removal capacities for both single and competitive metal ions were superior to CSMX composite. However, the adsorption capacities after five successive regeneration sequences were only dropped by 13.2% for Zn(II) and 17.4% for Cd(II) onto the CSMX composite compared to the first cycle. These results confirm that both metals could be efficiently terminated from wastewater, which makes the prepared CSMX composite a favorable candidate adsorbent in practical applications.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"5 3","pages":"Pages 339-347"},"PeriodicalIF":9.1000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666952823000419/pdfft?md5=9cbe5f70955e5fee1ad187cb6e80003a&pid=1-s2.0-S2666952823000419-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952823000419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc and cadmium pollutants cause a significant environmental effect that cannot be ignored. Due to their considerable amount in an aqueous environment, industries are seeking suitable adsorbents that are environmentally friendly and inexpensive for removing metals from wastewater before disposing of them in surface waters. This research employed original MXene (MX) and chitosan-modified MXene (CSMX) to extract zinc (Zn(II)) and cadmium (Cd(II)) metal ions from water-based solutions. The composite material produced was analyzed using techniques such as X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET). The effects of contact duration, pH of the solution, and initial concentration of metal ions on the adsorption process of Zn(II) and Cd(II) onto both MX and CSMX composites were investigated. MX and prepared CSMX composite presented a high adsorption capacity for both studied heavy metals, which were 91.55 and 73.82 mg/g for Zn(II) and Cd(II) onto MX, 106.84 and 93.07 mg/g for Cd(II) and Zn(II) onto CSMX composite, respectively. Furthermore, the maximum competitive adsorption capacities for Zn(II) onto MX and CSMX composites are 77.29 and 93.47 mg/g, and for are Cd(II) 60.30 and 79.66 mg/g, respectively. Hence, the removal capacities for both single and competitive metal ions were superior to CSMX composite. However, the adsorption capacities after five successive regeneration sequences were only dropped by 13.2% for Zn(II) and 17.4% for Cd(II) onto the CSMX composite compared to the first cycle. These results confirm that both metals could be efficiently terminated from wastewater, which makes the prepared CSMX composite a favorable candidate adsorbent in practical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖和壳聚糖改性mxenes对废水中锌和镉离子的增强封端:合成、表征和吸附性能
锌和镉污染物对环境的影响不容忽视。由于锌和镉在水环境中的含量相当大,各行各业都在寻找既环保又廉价的合适吸附剂,以便在将金属排入地表水之前将其从废水中去除。本研究采用原始 MXene(MX)和壳聚糖改性 MXene(CSMX)从水基溶液中提取锌(Zn(II))和镉(Cd(II))金属离子。利用 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、傅立叶变换红外光谱 (FTIR) 和布鲁瑙尔-艾美特-泰勒 (BET) 等技术对制备的复合材料进行了分析。研究了接触时间、溶液 pH 值和金属离子初始浓度对 MX 和 CSMX 复合材料吸附 Zn(II) 和 Cd(II) 过程的影响。MX 和制备的 CSMX 复合材料对所研究的两种重金属都有很高的吸附容量,MX 对 Zn(II) 和 Cd(II) 的吸附容量分别为 91.55 和 73.82 mg/g,CSMX 复合材料对 Cd(II) 和 Zn(II) 的吸附容量分别为 106.84 和 93.07 mg/g。此外,MX 和 CSMX 复合材料对 Zn(II) 的最大竞争吸附容量分别为 77.29 和 93.47 毫克/克,对 Cd(II) 的最大竞争吸附容量分别为 60.30 和 79.66 毫克/克。因此,CSMX 复合材料对单一金属离子和竞争性金属离子的去除能力都更胜一筹。然而,与第一个循环相比,CSMX 复合材料在连续五个再生循环后对 Zn(II) 和 Cd(II) 的吸附能力分别只下降了 13.2% 和 17.4%。这些结果证实,废水中的这两种金属都能被有效地去除,这使得制备的 CSMX 复合材料在实际应用中成为一种有利的候选吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Chemical Engineering
Green Chemical Engineering Process Chemistry and Technology, Catalysis, Filtration and Separation
CiteScore
11.60
自引率
0.00%
发文量
58
审稿时长
51 days
期刊最新文献
Outside Back Cover OFC: Outside Front Cover OFC: Outside Front Cover Outside Back Cover Outside Back Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1