Optimization Under Connected Uncertainty

O. Nohadani, Kartikey Sharma
{"title":"Optimization Under Connected Uncertainty","authors":"O. Nohadani, Kartikey Sharma","doi":"10.1287/ijoo.2021.0067","DOIUrl":null,"url":null,"abstract":"Robust optimization methods have shown practical advantages in a wide range of decision-making applications under uncertainty. Recently, their efficacy has been extended to multiperiod settings. Current approaches model uncertainty either independent of the past or in an implicit fashion by budgeting the aggregate uncertainty. In many applications, however, past realizations directly influence future uncertainties. For this class of problems, we develop a modeling framework that explicitly incorporates this dependence via connected uncertainty sets, whose parameters at each period depend on previous uncertainty realizations. To find optimal here-and-now solutions, we reformulate robust and distributionally robust constraints for popular set structures and demonstrate this modeling framework numerically on broadly applicable knapsack and portfolio-optimization problems.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2021.0067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Robust optimization methods have shown practical advantages in a wide range of decision-making applications under uncertainty. Recently, their efficacy has been extended to multiperiod settings. Current approaches model uncertainty either independent of the past or in an implicit fashion by budgeting the aggregate uncertainty. In many applications, however, past realizations directly influence future uncertainties. For this class of problems, we develop a modeling framework that explicitly incorporates this dependence via connected uncertainty sets, whose parameters at each period depend on previous uncertainty realizations. To find optimal here-and-now solutions, we reformulate robust and distributionally robust constraints for popular set structures and demonstrate this modeling framework numerically on broadly applicable knapsack and portfolio-optimization problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连通不确定性下的优化
稳健优化方法在不确定性条件下的广泛决策应用中显示出了实际优势。最近,它们的功效已经扩展到多周期环境中。目前的方法要么独立于过去,要么通过对总不确定性进行预算,以隐含的方式对不确定性进行建模。然而,在许多应用中,过去的实现直接影响未来的不确定性。对于这类问题,我们开发了一个建模框架,该框架通过连接的不确定性集明确地结合了这种依赖性,其每个周期的参数取决于以前的不确定性实现。为了找到此时此地的最优解,我们为流行的集合结构重新制定了鲁棒和分布鲁棒约束,并在广泛适用的背包和投资组合优化问题上对该建模框架进行了数值演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Stochastic Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Equality-Constrained Optimization Scenario-Based Robust Optimization for Two-Stage Decision Making Under Binary Uncertainty On the Hardness of Learning from Censored and Nonstationary Demand Temporal Bin Packing with Half-Capacity Jobs Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1