{"title":"The Fluid Mechanics of Deep-Sea Mining","authors":"T. Peacock, R. Ouillon","doi":"10.1146/annurev-fluid-031822-010257","DOIUrl":null,"url":null,"abstract":"Fluid mechanics lies at the heart of many of the physical processes associated with the nascent deep-sea mining industry. The evolution and fate of sediment plumes that would be produced by seabed mining activities, which are central to the assessment of the environmental impact, are entirely determined by transport processes. These processes, which include advection, turbulent mixing, buoyancy, differential particle settling, and flocculation, operate at a multitude of spatiotemporal scales. A combination of historical and recent efforts that combine theory, numerical modeling, laboratory experiments, and field trials has yielded significant progress, including assessing the role of environmental and operational parameters in setting the extent of sediment plumes, but more fundamental and applied fluid mechanics research is needed before models can accurately predict commercial-scale scenarios. Furthermore, fluid mechanics underpins the design and operation of proposed mining technologies, for which there are currently no established best practices. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":25.4000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-031822-010257","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 7
Abstract
Fluid mechanics lies at the heart of many of the physical processes associated with the nascent deep-sea mining industry. The evolution and fate of sediment plumes that would be produced by seabed mining activities, which are central to the assessment of the environmental impact, are entirely determined by transport processes. These processes, which include advection, turbulent mixing, buoyancy, differential particle settling, and flocculation, operate at a multitude of spatiotemporal scales. A combination of historical and recent efforts that combine theory, numerical modeling, laboratory experiments, and field trials has yielded significant progress, including assessing the role of environmental and operational parameters in setting the extent of sediment plumes, but more fundamental and applied fluid mechanics research is needed before models can accurately predict commercial-scale scenarios. Furthermore, fluid mechanics underpins the design and operation of proposed mining technologies, for which there are currently no established best practices. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.