{"title":"Coupling of geographic range and provincialism in Cambrian marine invertebrates","authors":"L. Na, Á. Kocsis, Qijian Li, W. Kiessling","doi":"10.1017/pab.2022.36","DOIUrl":null,"url":null,"abstract":"Abstract. The Cambrian saw a dramatic increase in metazoan diversity and abundance. Between-assemblage diversity (beta diversity) soared in the first three Cambrian stages, suggesting a rapid increase in the geodisparity of marine animals during the Cambrian radiation. However, it remains unclear how these changes scale up to first-order biogeographic patterns. Here we outline time-traceable provinces for marine invertebrates across the Cambrian period using a compositional network based on species-level fossil occurrence data. Results confirm an increase in regional differences of faunal composition and a decrease in by-species geographic distribution during the first three stages. We also show that general biogeography tends to be reshaped after global extinction pulses. We suggest that the abrupt biogeographic differentiation during the Cambrian radiation was controlled by a combination of tectonics, paleoclimate, and dispersal capacity changes.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/pab.2022.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract. The Cambrian saw a dramatic increase in metazoan diversity and abundance. Between-assemblage diversity (beta diversity) soared in the first three Cambrian stages, suggesting a rapid increase in the geodisparity of marine animals during the Cambrian radiation. However, it remains unclear how these changes scale up to first-order biogeographic patterns. Here we outline time-traceable provinces for marine invertebrates across the Cambrian period using a compositional network based on species-level fossil occurrence data. Results confirm an increase in regional differences of faunal composition and a decrease in by-species geographic distribution during the first three stages. We also show that general biogeography tends to be reshaped after global extinction pulses. We suggest that the abrupt biogeographic differentiation during the Cambrian radiation was controlled by a combination of tectonics, paleoclimate, and dispersal capacity changes.