Comparing DIC and WAIC for multilevel models with missing data.

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL Behavior Research Methods Pub Date : 2024-04-01 Epub Date: 2023-10-20 DOI:10.3758/s13428-023-02231-0
Han Du, Brian Keller, Egamaria Alacam, Craig Enders
{"title":"Comparing DIC and WAIC for multilevel models with missing data.","authors":"Han Du, Brian Keller, Egamaria Alacam, Craig Enders","doi":"10.3758/s13428-023-02231-0","DOIUrl":null,"url":null,"abstract":"<p><p>In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). We use a multilevel mediation model as an illustrative example to compare different types of DIC and WAIC. More specifically, we aim to compare the performance of conditional and marginal DICs and WAICs, and investigate their performance with missing data. We focus on two versions of DIC ( <math><mrow><mi>D</mi> <mi>I</mi> <msub><mi>C</mi> <mn>1</mn></msub> </mrow> </math> and <math><mrow><mi>D</mi> <mi>I</mi> <msub><mi>C</mi> <mn>2</mn></msub> </mrow> </math> ) and one version of WAIC. In addition, we explore whether it is necessary to include the nuisance models of incomplete exogenous variables in likelihood. Based on the simulation results, whether <math><mrow><mi>D</mi> <mi>I</mi> <msub><mi>C</mi> <mn>2</mn></msub> </mrow> </math> is better than <math><mrow><mi>D</mi> <mi>I</mi> <msub><mi>C</mi> <mn>1</mn></msub> </mrow> </math> and WAIC and whether we should include the nuisance models of exogenous variables in likelihood functions depend on whether we use marginal or conditional likelihoods. Overall, we find that the marginal likelihood based- <math><mrow><mi>D</mi> <mi>I</mi> <msub><mi>C</mi> <mn>2</mn></msub> </mrow> </math> that excludes the likelihood of covariate models generally had the highest true model selection rates.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":" ","pages":"2731-2750"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-023-02231-0","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). We use a multilevel mediation model as an illustrative example to compare different types of DIC and WAIC. More specifically, we aim to compare the performance of conditional and marginal DICs and WAICs, and investigate their performance with missing data. We focus on two versions of DIC ( D I C 1 and D I C 2 ) and one version of WAIC. In addition, we explore whether it is necessary to include the nuisance models of incomplete exogenous variables in likelihood. Based on the simulation results, whether D I C 2 is better than D I C 1 and WAIC and whether we should include the nuisance models of exogenous variables in likelihood functions depend on whether we use marginal or conditional likelihoods. Overall, we find that the marginal likelihood based- D I C 2 that excludes the likelihood of covariate models generally had the highest true model selection rates.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较缺失数据的多级模型的DIC和WAIC。
在贝叶斯统计学中,最广泛使用的贝叶斯模型评估和比较标准是偏差信息标准(DIC)和渡边赤池信息标准(WAIC)。我们使用多级中介模型作为示例来比较不同类型的DIC和WAIC。更具体地说,我们旨在比较条件和边际DIC以及WAIC的性能,并研究它们在缺少数据的情况下的性能。我们专注于DIC的两个版本([Former:见正文]和[Former::见正文])和WAIC的一个版本。此外,我们还探讨了是否有必要在似然中包含不完全外生变量的妨害模型。根据模拟结果,[公式:见正文]是否优于[公式:看正文]和WAIC,以及我们是否应该在似然函数中包括外生变量的滋扰模型,取决于我们使用的是边际似然还是条件似然。总体而言,我们发现,排除协变量模型可能性的基于边际似然的[公式:见正文]通常具有最高的真实模型选择率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
期刊最新文献
Dissecting the components of error in analogue report tasks. A template and tutorial for preregistering studies using passive smartphone measures. Scoring story recall for individual differences research: Central details, peripheral details, and automated scoring. A tutorial: Analyzing eye and head movements in virtual reality. Behavioral science labs: How to solve the multi-user problem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1