Antibacterial and in vitro anticancer activities of the antimicrobial peptide NRC-07 encapsulated in chitosan nanoparticles

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Peptide Science Pub Date : 2023-10-19 DOI:10.1002/psc.3550
Nancy O. Turky, Noura A. Abdelmonem, Salma N. Tammam, Mohamed Z. Gad, Hans-Georg Breitinger, Ulrike Breitinger
{"title":"Antibacterial and in vitro anticancer activities of the antimicrobial peptide NRC-07 encapsulated in chitosan nanoparticles","authors":"Nancy O. Turky,&nbsp;Noura A. Abdelmonem,&nbsp;Salma N. Tammam,&nbsp;Mohamed Z. Gad,&nbsp;Hans-Georg Breitinger,&nbsp;Ulrike Breitinger","doi":"10.1002/psc.3550","DOIUrl":null,"url":null,"abstract":"<p>Antimicrobial peptides (AMPs) are promising alternatives to conventional antibiotics and chemotherapy in the treatment of multidrug-resistant pathogens and drug-resistant cancers. Clinical application of AMPs is limited due to low stability and inefficient transport. Encapsulation in nanocarriers may improve their therapeutic potential. Chitosan nanoparticles (CS-NPs) are efficient carriers for proteins and peptides, improving the treatment of microbial infections and targeted drug delivery. We examined toxicity against cancer cell lines and antibacterial activities of the pleurocidin-like AMP NRC-07 upon encapsulation in CS-NPs by ionotropic gelation. The biological activities of various formulations of free and encapsulated NRC-07 and free nanoparticles were evaluated against <i>Pseudomonas aeruginosa</i> and breast cancer cells, using assays for cell viability and lactate dehydrogenase cytolysis with non-cancer cell lines as controls. NRC-07-containing nanoparticles decreased the bacterial and cancer cell viability in a concentration-dependent manner. Activities of encapsulated peptide were &gt;2-fold higher than those of free NRC-07 peptide. Unloaded CS-NPs and free peptide were not cytotoxic against control cells. Encapsulation of NRC-07 into CS-NPs enhanced the antibacterial and selective cytotoxicity of the peptide, possibly enhancing anticancer activities. Encapsulation presents a promising tool for the development of efficient drug delivery systems.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.3550","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial peptides (AMPs) are promising alternatives to conventional antibiotics and chemotherapy in the treatment of multidrug-resistant pathogens and drug-resistant cancers. Clinical application of AMPs is limited due to low stability and inefficient transport. Encapsulation in nanocarriers may improve their therapeutic potential. Chitosan nanoparticles (CS-NPs) are efficient carriers for proteins and peptides, improving the treatment of microbial infections and targeted drug delivery. We examined toxicity against cancer cell lines and antibacterial activities of the pleurocidin-like AMP NRC-07 upon encapsulation in CS-NPs by ionotropic gelation. The biological activities of various formulations of free and encapsulated NRC-07 and free nanoparticles were evaluated against Pseudomonas aeruginosa and breast cancer cells, using assays for cell viability and lactate dehydrogenase cytolysis with non-cancer cell lines as controls. NRC-07-containing nanoparticles decreased the bacterial and cancer cell viability in a concentration-dependent manner. Activities of encapsulated peptide were >2-fold higher than those of free NRC-07 peptide. Unloaded CS-NPs and free peptide were not cytotoxic against control cells. Encapsulation of NRC-07 into CS-NPs enhanced the antibacterial and selective cytotoxicity of the peptide, possibly enhancing anticancer activities. Encapsulation presents a promising tool for the development of efficient drug delivery systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖纳米粒子包封的抗菌肽NRC-07的抗菌和体外抗癌活性。
抗菌肽(AMPs)是治疗多重耐药病原体和耐药癌症的传统抗生素和化疗的有前途的替代品。AMPs的临床应用由于稳定性低和运输效率低而受到限制。封装在纳米载体中可以提高其治疗潜力。壳聚糖纳米粒子是蛋白质和肽的有效载体,可改善微生物感染的治疗和靶向药物递送。我们检测了类胸膜炎素AMP NRC-07对癌症细胞系的毒性和通过离子致凝胶化包封在CS-NP中的抗菌活性。以非癌细胞系为对照,使用细胞活力和乳酸脱氢酶细胞溶解测定法,评估了游离和包封的NRC-07和游离纳米颗粒的各种制剂对铜绿假单胞菌和乳腺癌症细胞的生物活性。含NRC-07的纳米颗粒以浓度依赖的方式降低细菌和癌症细胞的活力。包封肽的活性比游离NRC-07肽的活性高出2倍以上。未负载的CS NP和游离肽对对照细胞没有细胞毒性。将NRC-07封装到CS NP中增强了肽的抗菌和选择性细胞毒性,可能增强了抗癌活性。封装为开发高效的药物递送系统提供了一种很有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Peptide Science
Journal of Peptide Science 生物-分析化学
CiteScore
3.40
自引率
4.80%
发文量
83
审稿时长
1.7 months
期刊介绍: The official Journal of the European Peptide Society EPS The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews. The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.
期刊最新文献
Combination of the amide‐to‐triazole substitution strategy with alternative structural modifications for the metabolic stabilization of tumor‐targeting, radiolabeled peptides Issue Information Abstracts Multifunctional magneto-plasmonic lipogel based on peptide hydrogel for application in combined cancer therapy. Rational design of self-assembling ultrashort peptides for the shape- and size-tunable synthesis of metal nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1