Margaret G. Guo, David L. Reynolds, Cheen E. Ang, Yingfei Liu, Yang Zhao, Laura K. H. Donohue, Zurab Siprashvili, Xue Yang, Yongjin Yoo, Smarajit Mondal, Audrey Hong, Jessica Kain, Lindsey Meservey, Tania Fabo, Ibtihal Elfaki, Laura N. Kellman, Nathan S. Abell, Yash Pershad, Vafa Bayat, Payam Etminani, Mark Holodniy, Daniel H. Geschwind, Stephen B. Montgomery, Laramie E. Duncan, Alexander E. Urban, Russ B. Altman, Marius Wernig, Paul A. Khavari
{"title":"Integrative analyses highlight functional regulatory variants associated with neuropsychiatric diseases","authors":"Margaret G. Guo, David L. Reynolds, Cheen E. Ang, Yingfei Liu, Yang Zhao, Laura K. H. Donohue, Zurab Siprashvili, Xue Yang, Yongjin Yoo, Smarajit Mondal, Audrey Hong, Jessica Kain, Lindsey Meservey, Tania Fabo, Ibtihal Elfaki, Laura N. Kellman, Nathan S. Abell, Yash Pershad, Vafa Bayat, Payam Etminani, Mark Holodniy, Daniel H. Geschwind, Stephen B. Montgomery, Laramie E. Duncan, Alexander E. Urban, Russ B. Altman, Marius Wernig, Paul A. Khavari","doi":"10.1038/s41588-023-01533-5","DOIUrl":null,"url":null,"abstract":"Noncoding variants of presumed regulatory function contribute to the heritability of neuropsychiatric disease. A total of 2,221 noncoding variants connected to risk for ten neuropsychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder, bipolar disorder, borderline personality disorder, major depression, generalized anxiety disorder, panic disorder, post-traumatic stress disorder, obsessive-compulsive disorder and schizophrenia, were studied in developing human neural cells. Integrating epigenomic and transcriptomic data with massively parallel reporter assays identified differentially-active single-nucleotide variants (daSNVs) in specific neural cell types. Expression-gene mapping, network analyses and chromatin looping nominated candidate disease-relevant target genes modulated by these daSNVs. Follow-up integration of daSNV gene editing with clinical cohort analyses suggested that magnesium transport dysfunction may increase neuropsychiatric disease risk and indicated that common genetic pathomechanisms may mediate specific symptoms that are shared across multiple neuropsychiatric diseases. Epigenomic profiling and massively parallel reporter assays identify 892 functional differentially-active single-nucleotide variants (daSNVs) linked to ten neuropsychiatric diseases. CRISPRi and gene editing approaches show magnesium transport dysfunction as a common genetic pathomechanism.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"55 11","pages":"1876-1891"},"PeriodicalIF":31.7000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-023-01533-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Noncoding variants of presumed regulatory function contribute to the heritability of neuropsychiatric disease. A total of 2,221 noncoding variants connected to risk for ten neuropsychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder, bipolar disorder, borderline personality disorder, major depression, generalized anxiety disorder, panic disorder, post-traumatic stress disorder, obsessive-compulsive disorder and schizophrenia, were studied in developing human neural cells. Integrating epigenomic and transcriptomic data with massively parallel reporter assays identified differentially-active single-nucleotide variants (daSNVs) in specific neural cell types. Expression-gene mapping, network analyses and chromatin looping nominated candidate disease-relevant target genes modulated by these daSNVs. Follow-up integration of daSNV gene editing with clinical cohort analyses suggested that magnesium transport dysfunction may increase neuropsychiatric disease risk and indicated that common genetic pathomechanisms may mediate specific symptoms that are shared across multiple neuropsychiatric diseases. Epigenomic profiling and massively parallel reporter assays identify 892 functional differentially-active single-nucleotide variants (daSNVs) linked to ten neuropsychiatric diseases. CRISPRi and gene editing approaches show magnesium transport dysfunction as a common genetic pathomechanism.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution