PVA/PVP Nanofibres Incorporated with Ecklonia cava Phlorotannins Exhibit Excellent Cytocompatibility and Accelerate Hyperglycaemic Wound Healing.

IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Tissue engineering and regenerative medicine Pub Date : 2024-02-01 Epub Date: 2023-10-21 DOI:10.1007/s13770-023-00590-5
Shou Jin Phang, Huey Xhin Teh, Mee Lee Looi, Mh Busra Fauzi, Yun Ping Neo, Bavani Arumugam, Umah Rani Kuppusamy
{"title":"PVA/PVP Nanofibres Incorporated with Ecklonia cava Phlorotannins Exhibit Excellent Cytocompatibility and Accelerate Hyperglycaemic Wound Healing.","authors":"Shou Jin Phang, Huey Xhin Teh, Mee Lee Looi, Mh Busra Fauzi, Yun Ping Neo, Bavani Arumugam, Umah Rani Kuppusamy","doi":"10.1007/s13770-023-00590-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic foot ulcer (DFU) is a major debilitating complication of diabetes. The lack of effective diabetic wound dressings has been a significant problem in DFU management. In this study, we aim to establish a phlorotannin-incorporated nanofibre system and determine its potential in accelerating hyperglycaemic wound healing.</p><p><strong>Methods: </strong>The effective dose of Ecklonia cava phlorotannins (ECP) for hyperglycaemic wound healing was determined prior to phlorotannin nanofibre fabrication using polyvinyl-alcohol (PVA), polyvinylpyrrolidone (PVP), and ECP. Vapour glutaraldehyde was used for crosslinking of the PVA/PVP nanofibres. The phlorotannin nanofibres were characterised, and their safety and cytocompatibility were validated. Next, the wound healing effect of phlorotannin nanofibres was determined with 2D wound scratch assay, whereas immunofluorescence staining of Collagen-I (Col-I) and Cytokeratin-14 (CK-14) was performed in human dermal fibroblasts (HDF) and human epidermal keratinocytes (HEK), respectively.</p><p><strong>Results: </strong>Our results demonstrated that 0.01 μg/mL ECP significantly improved hyperglycaemic wound healing without compromising cell viability and proliferation. Among all nanofibres, PVA/PVP/0.01 wt% ECP nanofibres exhibited the best hyperglycaemic wound healing effect. They displayed a diameter of 334.7 ± 10.1 nm, a porosity of 40.7 ± 3.3%, and a WVTR of 1718.1 ± 32.3 g/m<sup>2</sup>/day. Besides, the FTIR spectra and phlorotannin release profile validated the successful vapour glutaraldehyde crosslinking and ECP incorporation. We also demonstrated the potential of phlorotannin nanofibres as a non-cytotoxic wound dressing as they support the viability and proliferation of both HDF and HEK. Furthermore, phlorotannin nanofibres significantly ameliorated the impaired hyperglycaemic wound healing and restored the hyperglycaemic-induced Col-I reduction in HDF.</p><p><strong>Conclusion: </strong>Taken together, our findings show that phlorotannin nanofibres have the potential to be used as a diabetic wound dressing.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"243-260"},"PeriodicalIF":4.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825108/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-023-00590-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Diabetic foot ulcer (DFU) is a major debilitating complication of diabetes. The lack of effective diabetic wound dressings has been a significant problem in DFU management. In this study, we aim to establish a phlorotannin-incorporated nanofibre system and determine its potential in accelerating hyperglycaemic wound healing.

Methods: The effective dose of Ecklonia cava phlorotannins (ECP) for hyperglycaemic wound healing was determined prior to phlorotannin nanofibre fabrication using polyvinyl-alcohol (PVA), polyvinylpyrrolidone (PVP), and ECP. Vapour glutaraldehyde was used for crosslinking of the PVA/PVP nanofibres. The phlorotannin nanofibres were characterised, and their safety and cytocompatibility were validated. Next, the wound healing effect of phlorotannin nanofibres was determined with 2D wound scratch assay, whereas immunofluorescence staining of Collagen-I (Col-I) and Cytokeratin-14 (CK-14) was performed in human dermal fibroblasts (HDF) and human epidermal keratinocytes (HEK), respectively.

Results: Our results demonstrated that 0.01 μg/mL ECP significantly improved hyperglycaemic wound healing without compromising cell viability and proliferation. Among all nanofibres, PVA/PVP/0.01 wt% ECP nanofibres exhibited the best hyperglycaemic wound healing effect. They displayed a diameter of 334.7 ± 10.1 nm, a porosity of 40.7 ± 3.3%, and a WVTR of 1718.1 ± 32.3 g/m2/day. Besides, the FTIR spectra and phlorotannin release profile validated the successful vapour glutaraldehyde crosslinking and ECP incorporation. We also demonstrated the potential of phlorotannin nanofibres as a non-cytotoxic wound dressing as they support the viability and proliferation of both HDF and HEK. Furthermore, phlorotannin nanofibres significantly ameliorated the impaired hyperglycaemic wound healing and restored the hyperglycaemic-induced Col-I reduction in HDF.

Conclusion: Taken together, our findings show that phlorotannin nanofibres have the potential to be used as a diabetic wound dressing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PVA/PVP纳米纤维与Ecklonia cava Phlorodanin结合,表现出优异的细胞相容性,加速高血糖伤口愈合。
背景:糖尿病足溃疡(DFU)是糖尿病的主要衰弱并发症。缺乏有效的糖尿病伤口敷料一直是DFU管理中的一个重大问题。在这项研究中,我们旨在建立一种掺入根皮藤素的纳米纤维系统,并确定其在加速高血糖伤口愈合方面的潜力。方法:在使用聚乙烯醇(PVA)、聚乙烯吡咯烷酮(PVP)和ECP制备根皮藤素纳米纤维之前,测定Ecklonia cava根皮藤宁(ECP)对高血糖伤口愈合的有效剂量。采用气相戊二醛交联PVA/PVP纳米纤维。对根皮藤素纳米纤维进行了表征,并验证了其安全性和细胞相容性。接下来,用2D伤口划痕法测定根皮藤素纳米纤维的伤口愈合效果,而在人真皮成纤维细胞(HDF)和人表皮角质形成细胞(HEK)中分别进行胶原-I(Col-I)和细胞角蛋白-14(CK-14)的免疫荧光染色。结果:我们的结果表明,0.01μg/mL ECP在不影响细胞活力和增殖的情况下显著改善了高血糖伤口的愈合。在所有纳米纤维中,PVA/PVP/0.01wt%ECP纳米纤维表现出最好的高血糖伤口愈合效果。它们的直径为334.7 ± 10.1nm,孔隙率40.7 ± 3.3%,WVTR为1718.1 ± 32.3 g/m2/天。此外,FTIR光谱和根皮藤素释放曲线验证了蒸汽戊二醛交联和ECP掺入的成功性。我们还证明了根皮藤素纳米纤维作为非细胞毒性伤口敷料的潜力,因为它们支持HDF和HEK的生存能力和增殖。此外,根皮藤素纳米纤维显著改善了受损的高血糖伤口愈合,并恢复了高血糖诱导的HDF的Col-I降低。结论:总之,我们的研究结果表明,根皮藤素纳米纤维具有用作糖尿病伤口敷料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue engineering and regenerative medicine
Tissue engineering and regenerative medicine CELL & TISSUE ENGINEERING-ENGINEERING, BIOMEDICAL
CiteScore
6.80
自引率
5.60%
发文量
83
审稿时长
6-12 weeks
期刊介绍: Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.
期刊最新文献
Determining Which Hydrostatic Pressure Regimes Promote Osteogenesis in Human Mesenchymal Stem Cells. Collagen-Heparin-FGF2-VEGF Scaffolds Induce a Regenerative Gene Expression Profile in a Fetal Sheep Wound Model. Macrophage Polarization: A Novel Target and Strategy for Pathological Scarring. Perfusion Bioreactor Conditioning of Small-diameter Plant-based Vascular Grafts. Exosomes-Shuttled lncRNA SNHG7 by Bone Marrow Mesenchymal Stem Cells Alleviates Osteoarthritis Through Targeting miR-485-5p/FSP1 Axis-Mediated Chondrocytes Ferroptosis and Inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1