Kyungyeon Ra , Caitlin Proctor , Christian Ley , Danielle Angert , Yoorae Noh , Tolulope Odimayomi , Andrew J. Whelton
{"title":"Four buildings and a flush: Lessons from degraded water quality and recommendations on building water management","authors":"Kyungyeon Ra , Caitlin Proctor , Christian Ley , Danielle Angert , Yoorae Noh , Tolulope Odimayomi , Andrew J. Whelton","doi":"10.1016/j.ese.2023.100314","DOIUrl":null,"url":null,"abstract":"<div><p>A reduction in building occupancy can lead to stagnant water in plumbing, and the potential consequences for water quality have gained increasing attention. To investigate this, a study was conducted during the COVID-19 pandemic, focusing on water quality in four institutional buildings. Two of these buildings were old (>58 years) and large (>19,000 m<sup>2</sup>), while the other two were new (>13 years) and small (<11,000 m<sup>2</sup>). The study revealed significant decreases in water usage in the small buildings, whereas usage remained unchanged in the large buildings. Initial analysis found that residual chlorine was rarely detectable in cold/drinking water samples. Furthermore, the pH, dissolved oxygen, total organic carbon, and total cell count levels in the first draw of cold water samples were similar across all buildings. However, the ranges of heavy metal concentrations in large buildings were greater than observed in small buildings. Copper (Cu), lead (Pb), and manganese (Mn) sporadically exceeded drinking water limits at cold water fixtures, with maximum concentrations of 2.7 mg Cu L<sup>−1</sup>, 45.4 μg Pb L<sup>−1</sup>, 1.9 mg Mn L<sup>−1</sup>. Flushing the plumbing for 5 min resulted in detectable residual at fixtures in three buildings, but even after 125 min of flushing in largest and oldest building, no residual chlorine was detected at the fixture closest to the building's point of entry. During the pandemic, the building owner conducted fixture flushing, where one to a few fixtures were operated per visit in buildings with hundreds of fixtures and multiple floors. However, further research is needed to understand the fundamental processes that control faucet water quality from the service line to the faucet. In the absence of this knowledge, building owners should create and use as-built drawings to develop flushing plans and conduct periodic water testing.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"18 ","pages":"Article 100314"},"PeriodicalIF":14.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4e/16/main.PMC10579424.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498423000790","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A reduction in building occupancy can lead to stagnant water in plumbing, and the potential consequences for water quality have gained increasing attention. To investigate this, a study was conducted during the COVID-19 pandemic, focusing on water quality in four institutional buildings. Two of these buildings were old (>58 years) and large (>19,000 m2), while the other two were new (>13 years) and small (<11,000 m2). The study revealed significant decreases in water usage in the small buildings, whereas usage remained unchanged in the large buildings. Initial analysis found that residual chlorine was rarely detectable in cold/drinking water samples. Furthermore, the pH, dissolved oxygen, total organic carbon, and total cell count levels in the first draw of cold water samples were similar across all buildings. However, the ranges of heavy metal concentrations in large buildings were greater than observed in small buildings. Copper (Cu), lead (Pb), and manganese (Mn) sporadically exceeded drinking water limits at cold water fixtures, with maximum concentrations of 2.7 mg Cu L−1, 45.4 μg Pb L−1, 1.9 mg Mn L−1. Flushing the plumbing for 5 min resulted in detectable residual at fixtures in three buildings, but even after 125 min of flushing in largest and oldest building, no residual chlorine was detected at the fixture closest to the building's point of entry. During the pandemic, the building owner conducted fixture flushing, where one to a few fixtures were operated per visit in buildings with hundreds of fixtures and multiple floors. However, further research is needed to understand the fundamental processes that control faucet water quality from the service line to the faucet. In the absence of this knowledge, building owners should create and use as-built drawings to develop flushing plans and conduct periodic water testing.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.