Elizabeth Baker, Jessica Ponder, Johannes Oberdorfer, Ingo Spreitzer, Jay Bolden, Marine Marius, Thierry Bonnevay, Kristie Sullivan
{"title":"Barriers to the Use of Recombinant Bacterial Endotoxins Test Methods in Parenteral Drug, Vaccine and Device Safety Testing.","authors":"Elizabeth Baker, Jessica Ponder, Johannes Oberdorfer, Ingo Spreitzer, Jay Bolden, Marine Marius, Thierry Bonnevay, Kristie Sullivan","doi":"10.1177/02611929231204782","DOIUrl":null,"url":null,"abstract":"<p><p>The Bacterial Endotoxins Test (BET) is a critical safety test that is used to detect bacterial endotoxins, which are the major contributor to fever-inducing contamination risks known as pyrogens. All parenteral therapies, including every lot of injected drugs, vaccines, medical devices, must be tested for pyrogens to ensure patient safety. Bacterial endotoxins test methods were developed as a highly sensitive detection method for bacterial endotoxins, after the discovery of a clotting cascade in horseshoe crab blood. However, horseshoe crab species are limited to some inshore coastal habitats along the Atlantic coast of the USA and others throughout Asia. Fully functional horseshoe crab clotting factors can be manufactured via recombinant protein production, and several BET methods featuring recombinant horseshoe crab proteins have now been developed for commercial use. Recombinant Bacterial Endotoxins Test (rBET) methods based on the use of recombinant Factor C (rFC) were established in the European Pharmacopoeia - however, these methods have not yet been granted compendial status in the United States Pharmacopoeia (USP). In order to facilitate dialogue between stakeholders, the Physicians Committee for Responsible Medicine hosted two virtual roundtable discussions on the perceived barriers to the use of rBET methods for US FDA requirements. Stakeholders agreed that multiple rFC-based methods have been demonstrated to have suitable analytical performance, as described in ICH Q2 on the Validation of Analytical Procedures and USP <1225> on the Validation of Compendial Procedures. United States Pharmacopoeia compendial inclusion of the rFC-based and other rBET methods was favoured, in order to reduce the additional burdens created by a lack of global harmonisation on BET testing requirements.</p>","PeriodicalId":55577,"journal":{"name":"Atla-Alternatives To Laboratory Animals","volume":" ","pages":"401-410"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atla-Alternatives To Laboratory Animals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/02611929231204782","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1
Abstract
The Bacterial Endotoxins Test (BET) is a critical safety test that is used to detect bacterial endotoxins, which are the major contributor to fever-inducing contamination risks known as pyrogens. All parenteral therapies, including every lot of injected drugs, vaccines, medical devices, must be tested for pyrogens to ensure patient safety. Bacterial endotoxins test methods were developed as a highly sensitive detection method for bacterial endotoxins, after the discovery of a clotting cascade in horseshoe crab blood. However, horseshoe crab species are limited to some inshore coastal habitats along the Atlantic coast of the USA and others throughout Asia. Fully functional horseshoe crab clotting factors can be manufactured via recombinant protein production, and several BET methods featuring recombinant horseshoe crab proteins have now been developed for commercial use. Recombinant Bacterial Endotoxins Test (rBET) methods based on the use of recombinant Factor C (rFC) were established in the European Pharmacopoeia - however, these methods have not yet been granted compendial status in the United States Pharmacopoeia (USP). In order to facilitate dialogue between stakeholders, the Physicians Committee for Responsible Medicine hosted two virtual roundtable discussions on the perceived barriers to the use of rBET methods for US FDA requirements. Stakeholders agreed that multiple rFC-based methods have been demonstrated to have suitable analytical performance, as described in ICH Q2 on the Validation of Analytical Procedures and USP <1225> on the Validation of Compendial Procedures. United States Pharmacopoeia compendial inclusion of the rFC-based and other rBET methods was favoured, in order to reduce the additional burdens created by a lack of global harmonisation on BET testing requirements.
期刊介绍:
Alternatives to Laboratory Animals (ATLA) is a peer-reviewed journal, intended to cover all aspects of the development, validation, implementation and use of alternatives to laboratory animals in biomedical research and toxicity testing. In addition to the replacement of animals, it also covers work that aims to reduce the number of animals used and refine the in vivo experiments that are still carried out.