Determining the Optimal Number of MEG Trials: A Machine Learning and Speech Decoding Perspective.

Debadatta Dash, Paul Ferrari, Saleem Malik, Albert Montillo, Joseph A Maldjian, Jun Wang
{"title":"Determining the Optimal Number of MEG Trials: A Machine Learning and Speech Decoding Perspective.","authors":"Debadatta Dash, Paul Ferrari, Saleem Malik, Albert Montillo, Joseph A Maldjian, Jun Wang","doi":"10.1007/978-3-030-05587-5_16","DOIUrl":null,"url":null,"abstract":"<p><p>Advancing the knowledge about neural speech mechanisms is critical for developing next-generation, faster brain computer interface to assist in speech communication for the patients with severe neurological conditions (e.g., locked-in syndrome). Among current neuroimaging techniques, Magnetoencephalography (MEG) provides direct representation for the large-scale neural dynamics of underlying cognitive processes based on its optimal spatiotemporal resolution. However, the MEG measured neural signals are smaller in magnitude compared to the background noise and hence, MEG usually suffers from a low signal-to-noise ratio (SNR) at the single-trial level. To overcome this limitation, it is common to record many trials of the same event-task and use the time-locked average signal for analysis, which can be very time consuming. In this study, we investigated the effect of the number of MEG recording trials required for speech decoding using a machine learning algorithm. We used a wavelet filter for generating the denoised neural features to train an Artificial Neural Network (ANN) for speech decoding. We found that wavelet based denoising increased the SNR of the neural signal prior to analysis and facilitated accurate speech decoding performance using as few as 40 single-trials. This study may open up the possibility of limiting MEG trials for other task evoked studies as well.</p>","PeriodicalId":92759,"journal":{"name":"Brain informatics : international conference, BI 2018, Arlington, TX, USA, December 7-9, 2018, proceedings. International Conference on Brain Informatics (2018 : Arlington, Tex.)","volume":"11309 ","pages":"163-172"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876632/pdf/nihms-1058370.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain informatics : international conference, BI 2018, Arlington, TX, USA, December 7-9, 2018, proceedings. International Conference on Brain Informatics (2018 : Arlington, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-05587-5_16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/12/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advancing the knowledge about neural speech mechanisms is critical for developing next-generation, faster brain computer interface to assist in speech communication for the patients with severe neurological conditions (e.g., locked-in syndrome). Among current neuroimaging techniques, Magnetoencephalography (MEG) provides direct representation for the large-scale neural dynamics of underlying cognitive processes based on its optimal spatiotemporal resolution. However, the MEG measured neural signals are smaller in magnitude compared to the background noise and hence, MEG usually suffers from a low signal-to-noise ratio (SNR) at the single-trial level. To overcome this limitation, it is common to record many trials of the same event-task and use the time-locked average signal for analysis, which can be very time consuming. In this study, we investigated the effect of the number of MEG recording trials required for speech decoding using a machine learning algorithm. We used a wavelet filter for generating the denoised neural features to train an Artificial Neural Network (ANN) for speech decoding. We found that wavelet based denoising increased the SNR of the neural signal prior to analysis and facilitated accurate speech decoding performance using as few as 40 single-trials. This study may open up the possibility of limiting MEG trials for other task evoked studies as well.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
确定MEG试验的最佳次数:机器学习和语音解码的视角。
提高神经语音机制的知识对于开发下一代更快的脑机接口至关重要,以帮助患有严重神经疾病(如闭锁综合征)的患者进行语音通信。在当前的神经成像技术中,脑磁图(MEG)基于其最佳时空分辨率,为潜在认知过程的大规模神经动力学提供了直接表示。然而,与背景噪声相比,MEG测量的神经信号的幅度较小,因此,MEG在单个试验水平上通常具有低信噪比(SNR)。为了克服这一限制,通常记录同一事件任务的许多试验,并使用时间锁定的平均信号进行分析,这可能非常耗时。在这项研究中,我们研究了使用机器学习算法进行语音解码所需的MEG记录试验次数的影响。我们使用小波滤波器来生成去噪的神经特征,以训练用于语音解码的人工神经网络(ANN)。我们发现,基于小波的去噪在分析之前提高了神经信号的信噪比,并使用多达40次的单次试验来促进准确的语音解码性能。这项研究也可能为其他任务诱发研究提供限制性脑磁图试验的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determining the Optimal Number of MEG Trials: A Machine Learning and Speech Decoding Perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1