Haili Li, Xingzhi Li, Pan Zhou, Xuanhao Zhang, Chunjie Wei, Jiantao Yao
{"title":"A Flexible Escape Skin Bioinspired by the Defensive Behavior of Shedding Scales.","authors":"Haili Li, Xingzhi Li, Pan Zhou, Xuanhao Zhang, Chunjie Wei, Jiantao Yao","doi":"10.1089/soro.2022.0211","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial skins with functions such as sensing, variable stiffness, actuation, self-healing, display, adhesion, and camouflage have been developed and widely used, but artificial skins with escape function are still a research gap. In nature, every species of animal can use its innate skills and functions to escape capture. Inspired by the behavior of fish-scale geckoes escaping predation by shedding scales when grasped or touched, we propose a flexible escape skin by attaching artificial scales to a flexible film. Experiments demonstrate that the escape skin has significant effects in reducing escape force, escaping from harmful force environments, and resisting mechanical damage. Furthermore, we enabled active control of escape force and skin hardness by changing temperature, increasing the adaptability of the escape skin to the surrounding. Our study helps lay the foundation for engineering systems that depend on escape skin to improve robustness.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"296-307"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2022.0211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial skins with functions such as sensing, variable stiffness, actuation, self-healing, display, adhesion, and camouflage have been developed and widely used, but artificial skins with escape function are still a research gap. In nature, every species of animal can use its innate skills and functions to escape capture. Inspired by the behavior of fish-scale geckoes escaping predation by shedding scales when grasped or touched, we propose a flexible escape skin by attaching artificial scales to a flexible film. Experiments demonstrate that the escape skin has significant effects in reducing escape force, escaping from harmful force environments, and resisting mechanical damage. Furthermore, we enabled active control of escape force and skin hardness by changing temperature, increasing the adaptability of the escape skin to the surrounding. Our study helps lay the foundation for engineering systems that depend on escape skin to improve robustness.