Phosphoinositide Regulation of TRP Channels: A Functional Overview in the Structural Era.

IF 15.7 1区 医学 Q1 PHYSIOLOGY Annual review of physiology Pub Date : 2024-02-12 Epub Date: 2023-10-23 DOI:10.1146/annurev-physiol-042022-013956
Tibor Rohacs
{"title":"Phosphoinositide Regulation of TRP Channels: A Functional Overview in the Structural Era.","authors":"Tibor Rohacs","doi":"10.1146/annurev-physiol-042022-013956","DOIUrl":null,"url":null,"abstract":"<p><p>Transient receptor potential (TRP) ion channels have diverse activation mechanisms including physical stimuli, such as high or low temperatures, and a variety of intracellular signaling molecules. Regulation by phosphoinositides and their derivatives is their only known common regulatory feature. For most TRP channels, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P<sub>2</sub>] serves as a cofactor required for activity. Such dependence on PI(4,5)P<sub>2</sub> has been demonstrated for members of the TRPM subfamily and for the epithelial TRPV5 and TRPV6 channels. Intracellular TRPML channels show specific activation by PI(3,5)P<sub>2</sub>. Structural studies uncovered the PI(4,5)P<sub>2</sub> and PI(3,5)P<sub>2</sub> binding sites for these channels and shed light on the mechanism of channel opening. PI(4,5)P<sub>2</sub> regulation of TRPV1-4 as well as some TRPC channels is more complex, involving both positive and negative effects. This review discusses the functional roles of phosphoinositides in TRP channel regulation and molecular insights gained from recent cryo-electron microscopy structures.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":null,"pages":null},"PeriodicalIF":15.7000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-042022-013956","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transient receptor potential (TRP) ion channels have diverse activation mechanisms including physical stimuli, such as high or low temperatures, and a variety of intracellular signaling molecules. Regulation by phosphoinositides and their derivatives is their only known common regulatory feature. For most TRP channels, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] serves as a cofactor required for activity. Such dependence on PI(4,5)P2 has been demonstrated for members of the TRPM subfamily and for the epithelial TRPV5 and TRPV6 channels. Intracellular TRPML channels show specific activation by PI(3,5)P2. Structural studies uncovered the PI(4,5)P2 and PI(3,5)P2 binding sites for these channels and shed light on the mechanism of channel opening. PI(4,5)P2 regulation of TRPV1-4 as well as some TRPC channels is more complex, involving both positive and negative effects. This review discusses the functional roles of phosphoinositides in TRP channel regulation and molecular insights gained from recent cryo-electron microscopy structures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷酸肌醇对TRP通道的调节:结构时代的功能综述。
瞬时受体电位(TRP)离子通道具有多种激活机制,包括物理刺激,如高温或低温,以及各种细胞内信号分子。磷酸肌醇及其衍生物的调节是它们唯一已知的共同调节特征。对于大多数TRP通道,磷脂酰肌醇4,5-二磷酸[PI(4,5)P2]作为活性所需的辅因子。TRPM亚家族成员以及上皮TRPV5和TRPV6通道已经证明了这种对PI(4,5)P2的依赖性。细胞内TRPML通道显示出PI(3,5)P2的特异性激活。结构研究揭示了这些通道的PI(4,5)P2和PI(3,5)P2结合位点,并揭示了通道开放的机制。TRPV1-4和一些TRPC通道的PI(4,5)P2调节更为复杂,涉及积极和消极影响。这篇综述讨论了磷酸肌醇在TRP通道调节中的功能作用,以及从最近的冷冻电子显微镜结构中获得的分子见解。《生理学年度评论》第86卷预计最终在线出版日期为2024年2月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of physiology
Annual review of physiology 医学-生理学
CiteScore
35.60
自引率
0.00%
发文量
41
期刊介绍: Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.
期刊最新文献
The Mineralocorticoid Receptor in the Vasculature: Friend or Foe? Intestinal Tuft Cells: Morphology, Function, and Implications for Human Health. Mechanosensing by Vascular Endothelium. Phosphoinositide Regulation of TRP Channels: A Functional Overview in the Structural Era. BK Channelopathies and KCNMA1-Linked Disease Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1