Zohreh Akbari, Mohammad Amin Raoufi, Sheyda Mirjalali, Behrouz Aghajanloo
{"title":"A review on inertial microfluidic fabrication methods.","authors":"Zohreh Akbari, Mohammad Amin Raoufi, Sheyda Mirjalali, Behrouz Aghajanloo","doi":"10.1063/5.0163970","DOIUrl":null,"url":null,"abstract":"<p><p>In recent decades, there has been significant interest in inertial microfluidics due to its high throughput, ease of fabrication, and no need for external forces. The focusing efficiency of inertial microfluidic systems relies entirely on the geometrical features of microchannels because hydrodynamic forces (inertial lift forces and Dean drag forces) are the main driving forces in inertial microfluidic devices. In the past few years, novel microchannel structures have been propounded to improve particle manipulation efficiency. However, the fabrication of these unconventional structures has remained a serious challenge. Although researchers have pushed forward the frontiers of microfabrication technologies, the fabrication techniques employed for inertial microfluidics have not been discussed comprehensively. This review introduces the microfabrication approaches used for creating inertial microchannels, including photolithography, xurography, laser cutting, micromachining, microwire technique, etching, hot embossing, 3D printing, and injection molding. The advantages and disadvantages of these methods have also been discussed. Then, the techniques are reviewed regarding resolution, structures, cost, and materials. This review provides a thorough insight into the manufacturing methods of inertial microchannels, which could be helpful for future studies to improve the harvesting yield and resolution by choosing a proper fabrication technique.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"17 5","pages":"051504"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0163970","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent decades, there has been significant interest in inertial microfluidics due to its high throughput, ease of fabrication, and no need for external forces. The focusing efficiency of inertial microfluidic systems relies entirely on the geometrical features of microchannels because hydrodynamic forces (inertial lift forces and Dean drag forces) are the main driving forces in inertial microfluidic devices. In the past few years, novel microchannel structures have been propounded to improve particle manipulation efficiency. However, the fabrication of these unconventional structures has remained a serious challenge. Although researchers have pushed forward the frontiers of microfabrication technologies, the fabrication techniques employed for inertial microfluidics have not been discussed comprehensively. This review introduces the microfabrication approaches used for creating inertial microchannels, including photolithography, xurography, laser cutting, micromachining, microwire technique, etching, hot embossing, 3D printing, and injection molding. The advantages and disadvantages of these methods have also been discussed. Then, the techniques are reviewed regarding resolution, structures, cost, and materials. This review provides a thorough insight into the manufacturing methods of inertial microchannels, which could be helpful for future studies to improve the harvesting yield and resolution by choosing a proper fabrication technique.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...