Marta Arch, Maria Vidal, Esther Fuentes, Anmaw Shite Abat, Pere-Joan Cardona
{"title":"The reproductive status determines tolerance and resistance to <i>Mycobacterium marinum</i> in <i>Drosophila melanogaster</i>.","authors":"Marta Arch, Maria Vidal, Esther Fuentes, Anmaw Shite Abat, Pere-Joan Cardona","doi":"10.1093/emph/eoad029","DOIUrl":null,"url":null,"abstract":"<p><p>Sex and reproductive status of the host have a major impact on the immune response against infection. Our aim was to understand their impact on host tolerance or resistance in the systemic <i>Mycobacterium marinum</i> infection of <i>Drosophila melanogaster</i>. We measured host survival and bacillary load at time of death, as well as expression by quantitative real-time polymerase chain reaction of immune genes (diptericin and drosomycin). We also assessed the impact of metabolic and hormonal regulation in the protection against infection by measuring expression of upd3, impl2 and ecR. Our data showed increased resistance in actively mating flies and in mated females, while reducing their tolerance to infection. Data suggests that Toll and immune deficiency (Imd) pathways determine tolerance and resistance, respectively, while higher basal levels of ecR favours the stimulation of the Imd pathway. A dual role has been found for upd3 expression, linked to increased/decreased mycobacterial load at the beginning and later in infection, respectively. Finally, impl2 expression has been related to increased resistance in non-actively mating males. These results allow further assessment on the differences between sexes and highlights the role of the reproductive status in <i>D. melanogaster</i> to face infections, demonstrating their importance to determine resistance and tolerance against <i>M. marinum</i> infection.</p>","PeriodicalId":12156,"journal":{"name":"Evolution, Medicine, and Public Health","volume":"11 1","pages":"332-347"},"PeriodicalIF":3.3000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution, Medicine, and Public Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/emph/eoad029","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sex and reproductive status of the host have a major impact on the immune response against infection. Our aim was to understand their impact on host tolerance or resistance in the systemic Mycobacterium marinum infection of Drosophila melanogaster. We measured host survival and bacillary load at time of death, as well as expression by quantitative real-time polymerase chain reaction of immune genes (diptericin and drosomycin). We also assessed the impact of metabolic and hormonal regulation in the protection against infection by measuring expression of upd3, impl2 and ecR. Our data showed increased resistance in actively mating flies and in mated females, while reducing their tolerance to infection. Data suggests that Toll and immune deficiency (Imd) pathways determine tolerance and resistance, respectively, while higher basal levels of ecR favours the stimulation of the Imd pathway. A dual role has been found for upd3 expression, linked to increased/decreased mycobacterial load at the beginning and later in infection, respectively. Finally, impl2 expression has been related to increased resistance in non-actively mating males. These results allow further assessment on the differences between sexes and highlights the role of the reproductive status in D. melanogaster to face infections, demonstrating their importance to determine resistance and tolerance against M. marinum infection.
期刊介绍:
About the Journal
Founded by Stephen Stearns in 2013, Evolution, Medicine, and Public Health is an open access journal that publishes original, rigorous applications of evolutionary science to issues in medicine and public health. It aims to connect evolutionary biology with the health sciences to produce insights that may reduce suffering and save lives. Because evolutionary biology is a basic science that reaches across many disciplines, this journal is open to contributions on a broad range of topics.