Predicting the duration of action of β2-adrenergic receptor agonists: Ligand and structure-based approaches.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Molecular Informatics Pub Date : 2023-12-01 Epub Date: 2023-11-09 DOI:10.1002/minf.202300141
Luca Chiesa, Emilie Sick, Esther Kellenberger
{"title":"Predicting the duration of action of β2-adrenergic receptor agonists: Ligand and structure-based approaches.","authors":"Luca Chiesa, Emilie Sick, Esther Kellenberger","doi":"10.1002/minf.202300141","DOIUrl":null,"url":null,"abstract":"<p><p>Agonists of the β2 adrenergic receptor (ADRB2) are an important class of medications used for the treatment of respiratory diseases. They can be classified as short acting (SABA) or long acting (LABA), with each class playing a different role in patient management. In this work we explored both ligand-based and structure-based high-throughput approaches to classify β2-agonists based on their duration of action. A completely in-silico prediction pipeline using an AlphaFold generated structure was used for structure-based modelling. Our analysis identified the ligands' 3D structure and lipophilicity as the most relevant features for the prediction of the duration of action. Interaction-based methods were also able to select ligands with the desired duration of action, incorporating the bias directly in the structure-based drug discovery pipeline without the need for further processing.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300141"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300141","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Agonists of the β2 adrenergic receptor (ADRB2) are an important class of medications used for the treatment of respiratory diseases. They can be classified as short acting (SABA) or long acting (LABA), with each class playing a different role in patient management. In this work we explored both ligand-based and structure-based high-throughput approaches to classify β2-agonists based on their duration of action. A completely in-silico prediction pipeline using an AlphaFold generated structure was used for structure-based modelling. Our analysis identified the ligands' 3D structure and lipophilicity as the most relevant features for the prediction of the duration of action. Interaction-based methods were also able to select ligands with the desired duration of action, incorporating the bias directly in the structure-based drug discovery pipeline without the need for further processing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测β2-肾上腺素能受体激动剂的作用持续时间:基于配体和结构的方法。
β2肾上腺素能受体激动剂(ADRB2)是一类用于治疗呼吸道疾病的重要药物。它们可以分为短效(SABA)或长效(LABA),每一类在患者管理中扮演不同的角色。在这项工作中,我们探索了基于配体和基于结构的高通量方法,根据β2-激动剂的作用时间对其进行分类。使用AlphaFold生成结构的完全计算机预测管道用于基于结构的建模。我们的分析确定配体的3D结构和亲脂性是预测作用持续时间的最相关特征。基于相互作用的方法也能够选择具有所需作用持续时间的配体,将偏差直接纳入基于结构的药物发现管道中,而无需进一步处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
期刊最新文献
Extended Activity Cliffs-Driven Approaches on Data Splitting for the Study of Bioactivity Machine Learning Predictions. BIOMX-DB: A web application for the BIOFACQUIM natural product database. Chemoinformatics for corrosion science: Data-driven modeling of corrosion inhibition by organic molecules. My 50 Years with Chemoinformatics. Pathway-based prediction of the therapeutic effects and mode of action of custom-made multiherbal medicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1