Dental Pulp Stem Cells for Bone Tissue Engineering: A Literature Review.

IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING Stem Cells International Pub Date : 2023-10-11 eCollection Date: 2023-01-01 DOI:10.1155/2023/7357179
Xiaolei Bai, Ruijue Cao, Danni Wu, Huicong Zhang, Fan Yang, Linhong Wang
{"title":"Dental Pulp Stem Cells for Bone Tissue Engineering: A Literature Review.","authors":"Xiaolei Bai,&nbsp;Ruijue Cao,&nbsp;Danni Wu,&nbsp;Huicong Zhang,&nbsp;Fan Yang,&nbsp;Linhong Wang","doi":"10.1155/2023/7357179","DOIUrl":null,"url":null,"abstract":"<p><p>Bone tissue engineering (BTE) is a promising approach for repairing and regenerating damaged bone tissue, using stem cells and scaffold structures. Among various stem cell sources, dental pulp stem cells (DPSCs) have emerged as a potential candidate due to their multipotential capabilities, ability to undergo osteogenic differentiation, low immunogenicity, and ease of isolation. This article reviews the biological characteristics of DPSCs, their potential for BTE, and the underlying transcription factors and signaling pathways involved in osteogenic differentiation; it also highlights the application of DPSCs in inducing scaffold tissues for bone regeneration and summarizes animal and clinical studies conducted in this field. This review demonstrates the potential of DPSC-based BTE for effective bone repair and regeneration, with implications for clinical translation.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2023 ","pages":"7357179"},"PeriodicalIF":3.8000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586346/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/7357179","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Bone tissue engineering (BTE) is a promising approach for repairing and regenerating damaged bone tissue, using stem cells and scaffold structures. Among various stem cell sources, dental pulp stem cells (DPSCs) have emerged as a potential candidate due to their multipotential capabilities, ability to undergo osteogenic differentiation, low immunogenicity, and ease of isolation. This article reviews the biological characteristics of DPSCs, their potential for BTE, and the underlying transcription factors and signaling pathways involved in osteogenic differentiation; it also highlights the application of DPSCs in inducing scaffold tissues for bone regeneration and summarizes animal and clinical studies conducted in this field. This review demonstrates the potential of DPSC-based BTE for effective bone repair and regeneration, with implications for clinical translation.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于骨组织工程的牙髓干细胞:文献综述。
骨组织工程是利用干细胞和支架结构修复和再生受损骨组织的一种很有前途的方法。在各种干细胞来源中,牙髓干细胞(DPSCs)由于其多潜能、进行成骨分化的能力、低免疫原性和易于分离而成为潜在的候选细胞。本文综述了DPSCs的生物学特性、其BTE的潜力,以及参与成骨分化的潜在转录因子和信号通路;它还强调了DPSCs在诱导用于骨再生的支架组织中的应用,并总结了在该领域进行的动物和临床研究。这篇综述证明了基于DPSC的BTE在有效骨修复和再生方面的潜力,并对临床翻译有启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stem Cells International
Stem Cells International CELL & TISSUE ENGINEERING-
CiteScore
8.10
自引率
2.30%
发文量
188
审稿时长
18 weeks
期刊介绍: Stem Cells International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of stem cell biology and applications. The journal will consider basic, translational, and clinical research, including animal models and clinical trials. Topics covered include, but are not limited to: embryonic stem cells; induced pluripotent stem cells; tissue-specific stem cells; stem cell differentiation; genetics and epigenetics; cancer stem cells; stem cell technologies; ethical, legal, and social issues.
期刊最新文献
Human iPSC Reprogramming Success: The Impact of Approaches and Source Materials. Exosome Loaded in Microneedle Patch Ameliorates Renal Ischemia-Reperfusion Injury in a Mouse Model. Human Umbilical Cord-Mesenchymal Stem Cells Combined With Low Dosage Nintedanib Rather Than Using Alone Mitigates Pulmonary Fibrosis in Mice. Noggin Combined With Human Dental Pulp Stem Cells to Promote Skeletal Muscle Regeneration. Transient Receptor Potential Ankyrin 1 (TRPA1) Mediated LPS-Induced Inflammation in Periodontal Ligament Stem Cells by Inhibiting the Phosphorylation of JNK.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1