Progress on Z genome biosynthetic pathway of bacteriophage.

Q3 Medicine 遗传 Pub Date : 2023-10-20 DOI:10.16288/j.yczz.23-059
Hui-Yu Chen, Su-Wen Zhao
{"title":"Progress on Z genome biosynthetic pathway of bacteriophage.","authors":"Hui-Yu Chen,&nbsp;Su-Wen Zhao","doi":"10.16288/j.yczz.23-059","DOIUrl":null,"url":null,"abstract":"<p><p>There are abundant base modifications in bacteriophages' genomes, mainly for avoiding the digestion of host endonucleases. More than 40 years ago, researchers discovered that 2-amino-adenine (Z) completely replaced adenine (A) and forms a complementary pairing with three hydrogen bonds with thymine (T) in the DNA of cyanophage S-2L, forming a distinct \"Z-genome\". In recent years, researchers have discovered and validated the biosynthetic pathway of Z-genome in various bacteriophages, constituting a multi-enzyme system. This system includes the phage-encoded enzymes deoxy-2'-aminoadenylosuccinate synthetase (PurZ), deoxyadenosine triphosphate hydrolase (dATPase/DatZ), deoxyadenosine/deoxyguanosine triphosphate pyrophosphatase (DUF550/MazZ) and DNA polymerase (DpoZ). In this review, we provide a concise overview of the historical discovery on diversely modified nucleosides in bacteriophages, then we comprehensively summarize the research progress on multiple enzymes involved in the Z-genome biosynthetic pathway. Finally, the potential applications of the Z-genome and the enzymes in its biosynthetic pathway are discussed in order to provide reference for research in this field.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.23-059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

There are abundant base modifications in bacteriophages' genomes, mainly for avoiding the digestion of host endonucleases. More than 40 years ago, researchers discovered that 2-amino-adenine (Z) completely replaced adenine (A) and forms a complementary pairing with three hydrogen bonds with thymine (T) in the DNA of cyanophage S-2L, forming a distinct "Z-genome". In recent years, researchers have discovered and validated the biosynthetic pathway of Z-genome in various bacteriophages, constituting a multi-enzyme system. This system includes the phage-encoded enzymes deoxy-2'-aminoadenylosuccinate synthetase (PurZ), deoxyadenosine triphosphate hydrolase (dATPase/DatZ), deoxyadenosine/deoxyguanosine triphosphate pyrophosphatase (DUF550/MazZ) and DNA polymerase (DpoZ). In this review, we provide a concise overview of the historical discovery on diversely modified nucleosides in bacteriophages, then we comprehensively summarize the research progress on multiple enzymes involved in the Z-genome biosynthetic pathway. Finally, the potential applications of the Z-genome and the enzymes in its biosynthetic pathway are discussed in order to provide reference for research in this field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噬菌体Z基因组生物合成途径研究进展。
噬菌体基因组中有大量的碱基修饰,主要是为了避免宿主核酸内切酶的消化。40多年前,研究人员发现,在蓝噬菌体S-2L的DNA中,2-氨基-腺嘌呤(Z)完全取代腺嘌呤(A),并与胸腺嘧啶(T)形成三个氢键的互补配对,形成了一个独特的“Z基因组”。近年来,研究人员在各种噬菌体中发现并验证了Z基因组的生物合成途径,构成了一个多酶系统。该系统包括噬菌体编码的酶脱氧2'-氨基腺苷酸琥珀酸合成酶(PurZ)、脱氧三磷酸腺苷水解酶(dATPase/DatZ)、去氧腺苷/脱氧鸟苷三磷酸焦磷酸酶(DUF550/MazZ)和DNA聚合酶(DpoZ)。在这篇综述中,我们简要概述了噬菌体中多种修饰核苷的历史发现,然后全面总结了Z基因组生物合成途径中多种酶的研究进展。最后,讨论了Z基因组及其酶在其生物合成途径中的潜在应用,为该领域的研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
遗传
遗传 Medicine-Medicine (all)
CiteScore
2.50
自引率
0.00%
发文量
6699
期刊介绍:
期刊最新文献
Advancements and prospects in reconstructing the genetic genealogies of ancient and modern human populations using ancestral recombination graphs. Advances in high throughput sequencing methods for DNA damage and repair. Application of Mendelian randomization analysis in investigating the genetic background of blood biomarkers for colorectal cancer. Computational dissection of the regulatory mechanisms of aberrant metabolism in remodeling the microenvironment of breast cancer. Gut metagenome-derived image augmentation and deep learning improve prediction accuracy of metabolic disease classification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1