Thymine DNA glycosylase combines sliding, hopping, and nucleosome interactions to efficiently search for 5-formylcytosine.

Brittani L Schnable, Matthew A Schaich, Vera Roginskaya, Liam P Leary, Tyler M Weaver, Bret D Freudenthal, Alexander C Drohat, Bennett Van Houten
{"title":"Thymine DNA glycosylase combines sliding, hopping, and nucleosome interactions to efficiently search for 5-formylcytosine.","authors":"Brittani L Schnable, Matthew A Schaich, Vera Roginskaya, Liam P Leary, Tyler M Weaver, Bret D Freudenthal, Alexander C Drohat, Bennett Van Houten","doi":"10.1101/2023.10.04.560925","DOIUrl":null,"url":null,"abstract":"<p><p>Base excision repair is the main pathway involved in active DNA demethylation. 5-formylctyosine and 5-carboxylcytosine, two oxidized moieties of methylated cytosine, are recognized and removed by thymine DNA glycosylase (TDG) to generate an abasic site. Using single molecule fluorescence experiments, we studied TDG in the presence and absence of 5-formylctyosine. TDG exhibits multiple modes of linear diffusion, including hopping and sliding, in search of a lesion. We probed TDG active site variants and truncated N-terminus revealing how these variants alter the lesion search and recognition mechanism of TDG. On DNA containing an undamaged nucleosome, TDG was found to either bypass, colocalize with, or encounter but not bypass the nucleosome. However, truncating the N-terminus reduced the number of interactions with the nucleosome. Our findings provide unprecedented mechanistic insights into how TDG searches for DNA lesions in chromatin.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592968/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.10.04.560925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Base excision repair is the main pathway involved in active DNA demethylation. 5-formylctyosine and 5-carboxylcytosine, two oxidized moieties of methylated cytosine, are recognized and removed by thymine DNA glycosylase (TDG) to generate an abasic site. Using single molecule fluorescence experiments, we studied TDG in the presence and absence of 5-formylctyosine. TDG exhibits multiple modes of linear diffusion, including hopping and sliding, in search of a lesion. We probed TDG active site variants and truncated N-terminus revealing how these variants alter the lesion search and recognition mechanism of TDG. On DNA containing an undamaged nucleosome, TDG was found to either bypass, colocalize with, or encounter but not bypass the nucleosome. However, truncating the N-terminus reduced the number of interactions with the nucleosome. Our findings provide unprecedented mechanistic insights into how TDG searches for DNA lesions in chromatin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单分子分析显示,TDG表现出多种线性扩散模式来处理5-甲酰基胞嘧啶。
DNA甲基化在表观遗传学中起着关键作用,60-80%的CpG位点含有5-甲基胞嘧啶。碱基切除修复(BER)被认为是参与活性DNA去甲基化的主要途径。5-甲酰基辛基鸟苷(5fC)是甲基化胞嘧啶的氧化部分,被胸腺嘧啶DNA糖基化酶(TDG)识别并去除以产生碱基位点。TDG与碱性位点强烈结合,并被产物抑制。使用单分子荧光实验,我们看到TDG与含有5fC的DNA特异性和非特异性相互作用,寿命分别为72.9秒和7.5秒。这些结果表明,TDG裂解5fC,并在产生的碱基位点保持结合很长时间。均方位移分析和双色TDG实验表明,TDG在寻找病变时表现出多种线性扩散模式,包括跳跃和滑动。与野生型相比,催化受损的变体N140A和R275A/L的结合寿命缩短,均方位移(MSD)分析表明R275L/a在DNA上以更快的扩散率移动。这些结果表明突变R275而不是N140干扰TDG的损伤识别。我们的发现让我们深入了解了TDG是如何在长时间未受损的DNA中寻找病变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovery of a multipotent cell type from the term human placenta. Phenotypic complexities of rare heterozygous neurexin-1 deletions. Regulation of NRF2 by Phosphoinositides and Small Heat Shock Proteins. Mediator Subunit Med4 Enforces Metastatic Dormancy in Breast Cancer. Entropy Changes in Water Networks Promote Protein Denaturation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1