Transcriptomic analysis of wheat reveals possible resistance mechanism mediated by Yr10 to stripe rust.

Zhongyi Wu, Gaohua Zhang, Ran Zhao, Qi Gao, Jinchen Zhao, Xiaoxu Zhu, Fangyan Wang, Zhensheng Kang, Xiaojing Wang
{"title":"Transcriptomic analysis of wheat reveals possible resistance mechanism mediated by Yr10 to stripe rust.","authors":"Zhongyi Wu, Gaohua Zhang, Ran Zhao, Qi Gao, Jinchen Zhao, Xiaoxu Zhu, Fangyan Wang, Zhensheng Kang, Xiaojing Wang","doi":"10.1007/s44154-023-00115-z","DOIUrl":null,"url":null,"abstract":"<p><p>Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a catastrophic disease that threatens global wheat yield. Yr10 is a race-specific all-stage disease resistance gene in wheat. However, the resistance mechanism of Yr10 is poorly characterized. Therefore, to elucidate the potential molecular mechanism mediated by Yr10, transcriptomic sequencing was performed at 0, 18, and 48 h post-inoculation (hpi) of compatible wheat Avocet S (AvS) and incompatible near-isogenic line (NIL) AvS + Yr10 inoculated with Pst race CYR32. Respectively, 227, 208, and 4050 differentially expressed genes (DEGs) were identified at 0, 18, and 48 hpi between incompatible and compatible interaction. The response of Yr10 to stripe rust involved various processes and activities, as indicated by the results of Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Specifically, the response included photosynthesis, defense response to fungus, metabolic processes related to salicylic acid (SA) and jasmonic acid (JA), and activities related to reactive oxygen species (ROS). Ten candidate genes were selected for qRT-PCR verification and the results showed that the transcriptomic data was reliable. Through the functional analysis of candidate genes by the virus-induced gene silencing (VIGS) system, it was found that the gene TaHPPD (4-hydroxyphenylpyruvate dioxygenase) negatively regulated the resistance of wheat to stripe rust by affecting SA signaling, pathogenesis-related (PR) gene expression, and ROS clearance. Our study provides insight into Yr10-mediated resistance in wheat.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"44"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593697/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-023-00115-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a catastrophic disease that threatens global wheat yield. Yr10 is a race-specific all-stage disease resistance gene in wheat. However, the resistance mechanism of Yr10 is poorly characterized. Therefore, to elucidate the potential molecular mechanism mediated by Yr10, transcriptomic sequencing was performed at 0, 18, and 48 h post-inoculation (hpi) of compatible wheat Avocet S (AvS) and incompatible near-isogenic line (NIL) AvS + Yr10 inoculated with Pst race CYR32. Respectively, 227, 208, and 4050 differentially expressed genes (DEGs) were identified at 0, 18, and 48 hpi between incompatible and compatible interaction. The response of Yr10 to stripe rust involved various processes and activities, as indicated by the results of Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Specifically, the response included photosynthesis, defense response to fungus, metabolic processes related to salicylic acid (SA) and jasmonic acid (JA), and activities related to reactive oxygen species (ROS). Ten candidate genes were selected for qRT-PCR verification and the results showed that the transcriptomic data was reliable. Through the functional analysis of candidate genes by the virus-induced gene silencing (VIGS) system, it was found that the gene TaHPPD (4-hydroxyphenylpyruvate dioxygenase) negatively regulated the resistance of wheat to stripe rust by affecting SA signaling, pathogenesis-related (PR) gene expression, and ROS clearance. Our study provides insight into Yr10-mediated resistance in wheat.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小麦转录组分析揭示了Yr10介导的抗条锈病机制。
小麦条锈病是一种严重威胁全球小麦产量的灾难性病害。Yr10是小麦的一个小种特异性全阶段抗病基因。然而,Yr10的电阻机制却没有得到很好的表征。因此,为了阐明Yr10介导的潜在分子机制,在相容小麦Avocet S(AvS)和不相容近等基因系AvS接种后0、18和48小时进行了转录组测序 + Yr10接种Pst小种CYR32。在不相容和相容相互作用之间,分别在0、18和48hpi处鉴定出227、208和4050个差异表达基因(DEG)。基因本体论(GO)富集分析和京都基因与基因组百科全书(KEGG)通路分析结果表明,Yr10对条锈病的反应涉及多种过程和活性。具体而言,反应包括光合作用、对真菌的防御反应、与水杨酸(SA)和茉莉酸(JA)相关的代谢过程,以及与活性氧(ROS)有关的活性。选择10个候选基因进行qRT-PCR验证,结果表明转录组学数据是可靠的。通过病毒诱导基因沉默(VIGS)系统对候选基因的功能分析,发现基因TaHPPD(4-羟基苯基丙酮酸双加氧酶)通过影响SA信号传导、发病机制相关(PR)基因表达和ROS清除,对小麦抗条锈病负调控。我们的研究提供了对Yr10介导的小麦抗性的深入了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Candidate genes associated with low temperature tolerance in cucumber adult plants identified by combining GWAS & QTL mapping. Novel endophytic fungus Leptosphaeria sp. strain T-2 improves plant growth and environmental stress tolerance. Utilizing effector-triggered immunity (ETI) as a robust priming agent to protect plants from pathogens. CsLAC4, regulated by CsmiR397a, confers drought tolerance to the tea plant by enhancing lignin biosynthesis. Correction: Zinc metalloprotease FgM35, which targets the wheat zinc-binding protein TaZnBP, contributes to the virulence of Fusarium graminearum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1