Design of a Wearable Real-Time Hand Motion Tracking System Using an Array of Soft Polymer Acoustic Waveguides.

Soft robotics Pub Date : 2024-04-01 Epub Date: 2023-10-23 DOI:10.1089/soro.2022.0091
Yuan Lin, Peter B Shull, Jean-Baptiste Chossat
{"title":"Design of a Wearable Real-Time Hand Motion Tracking System Using an Array of Soft Polymer Acoustic Waveguides.","authors":"Yuan Lin, Peter B Shull, Jean-Baptiste Chossat","doi":"10.1089/soro.2022.0091","DOIUrl":null,"url":null,"abstract":"<p><p>Robust hand motion tracking holds promise for improved human-machine interaction in diverse fields, including virtual reality, and automated sign language translation. However, current wearable hand motion tracking approaches are typically limited in detection performance, wearability, and durability. This article presents a hand motion tracking system using multiple soft polymer acoustic waveguides (SPAWs). The innovative use of SPAWs as strain sensors offers several advantages that address the limitations. SPAWs are easily manufactured by casting a soft polymer shaped as a soft acoustic waveguide and containing a commercially available small ceramic piezoelectric transducer. When used as strain sensors, SPAWs demonstrate high stretchability (up to 100%), high linearity (<i>R</i><sup>2</sup> > 0.996 in all quasi-static, dynamic, and durability tensile tests), negligible hysteresis (<0.7410% under strain of up to 100%), excellent repeatability, and outstanding durability (up to 100,000 cycles). SPAWs also show high accuracy for continuous finger angle estimation (average root-mean-square errors [RMSE] <2.00°) at various flexion-extension speeds. Finally, a hand-tracking system is designed based on a SPAW array. An example application is developed to demonstrate the performance of SPAWs in real-time hand motion tracking in a three-dimensional (3D) virtual environment. To our knowledge, the system detailed in this article is the first to use soft acoustic waveguides to capture human motion. This work is part of an ongoing effort to develop soft sensors using both time and frequency domains, with the goal of extracting decoupled signals from simple sensing structures. As such, it represents a novel and promising path toward soft, simple, and wearable multimodal sensors.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"282-295"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2022.0091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Robust hand motion tracking holds promise for improved human-machine interaction in diverse fields, including virtual reality, and automated sign language translation. However, current wearable hand motion tracking approaches are typically limited in detection performance, wearability, and durability. This article presents a hand motion tracking system using multiple soft polymer acoustic waveguides (SPAWs). The innovative use of SPAWs as strain sensors offers several advantages that address the limitations. SPAWs are easily manufactured by casting a soft polymer shaped as a soft acoustic waveguide and containing a commercially available small ceramic piezoelectric transducer. When used as strain sensors, SPAWs demonstrate high stretchability (up to 100%), high linearity (R2 > 0.996 in all quasi-static, dynamic, and durability tensile tests), negligible hysteresis (<0.7410% under strain of up to 100%), excellent repeatability, and outstanding durability (up to 100,000 cycles). SPAWs also show high accuracy for continuous finger angle estimation (average root-mean-square errors [RMSE] <2.00°) at various flexion-extension speeds. Finally, a hand-tracking system is designed based on a SPAW array. An example application is developed to demonstrate the performance of SPAWs in real-time hand motion tracking in a three-dimensional (3D) virtual environment. To our knowledge, the system detailed in this article is the first to use soft acoustic waveguides to capture human motion. This work is part of an ongoing effort to develop soft sensors using both time and frequency domains, with the goal of extracting decoupled signals from simple sensing structures. As such, it represents a novel and promising path toward soft, simple, and wearable multimodal sensors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用软聚合物声波导阵列的可佩戴实时手部运动跟踪系统的设计。
强大的手部运动跟踪有望在不同领域改善人机交互,包括虚拟现实和自动手语翻译。然而,当前的可穿戴手部运动跟踪方法通常在检测性能、可穿戴性和耐用性方面受到限制。本文介绍了一种使用多个软聚合物声波导(SPAW)的手部运动跟踪系统。SPAW作为应变传感器的创新使用提供了几个优点来解决这些局限性。SPAW可以通过铸造形状为软声波导的软聚合物并包含商业上可买到的小型陶瓷压电换能器来容易地制造。当用作应变传感器时,SPAW表现出高拉伸性(高达100%)、高线性(R2 > 在所有准静态、动态和耐久性拉伸试验中均为0.996),磁滞可忽略不计(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft Robotic Heart Formed with a Myocardial Band for Cardiac Functions. ZodiAq: An Isotropic Flagella-Inspired Soft Underwater Drone for Safe Marine Exploration. Reprogrammable Flexible Piezoelectric Actuator Arrays with a High Degree of Freedom for Shape Morphing and Locomotion. Small-Scale Soft Terrestrial Robot with Electrically Driven Multi-Modal Locomotion Capability. Soft Robotics in Upper Limb Neurorehabilitation and Assistance: Current Clinical Evidence and Recommendations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1