Aeration intensity drives dissolved organic matter transformation and humification during composting by regulating the organics metabolic functions of microbiome
Ting Xie, Zhaohan Zhang, Yanling Yu, Yan Tian, Fei Wang, Dongyi Li, Jun Nan, Yujie Feng
{"title":"Aeration intensity drives dissolved organic matter transformation and humification during composting by regulating the organics metabolic functions of microbiome","authors":"Ting Xie, Zhaohan Zhang, Yanling Yu, Yan Tian, Fei Wang, Dongyi Li, Jun Nan, Yujie Feng","doi":"10.1016/j.cej.2023.146645","DOIUrl":null,"url":null,"abstract":"<p>Oxygen levels are critical for composting success and improving humification. Whereas aeration intensity driving the structural heterogeneity and formation mechanism of humus in the dissolved organic matter (DOM) transformation process during kitchen waste with hydrothermal pretreatment composting remains unclear. In this study, the potential mechanisms of aeration intensity on humification were explored by Fourier transform infrared spectroscopy and fluorescence spectroscopy combined with functional microbial prediction analysis. The results showed that moderate aeration intensity (AR<sub>0.05</sub>, 0.05 L min<sup>−1</sup> kg<sup>−1</sup> DM) achieved a highly matured fertilizer with a humification index of 0.83 and a humic acid / fulvic acid (HA/FA) of 1.99. Partial least-squares path model demonstrated that environmental factors and humus-like substances were the two most critical factors to improve humification levels. According to the heterogeneous-2DCOS analysis, the biopolymers in DOM were preferentially decomposed into low molecular weight HA precursors through a series of biochemical reaction processes, and then formed the carbon skeleton of HA through condensation reactions, and finally polymerized into complex macromolecular HA. Bugbase analysis showed that AR<sub>0.05</sub> treatment reduced 58.52 % of potentially pathogenic bacteria in the thermophilic phase. Moreover, functional bacterial communities in composting systems with AR<sub>0.05</sub> were more favorable to drive the organic matter decomposition and HA formation. The mantel test revealed temperature and pH were key drivers in the composition of phenotypic and functional bacterial communities. This study provided unique insights into a deeper understanding of the aeration intensity on the humification pathways of kitchen waste composting.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2023.146645","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Oxygen levels are critical for composting success and improving humification. Whereas aeration intensity driving the structural heterogeneity and formation mechanism of humus in the dissolved organic matter (DOM) transformation process during kitchen waste with hydrothermal pretreatment composting remains unclear. In this study, the potential mechanisms of aeration intensity on humification were explored by Fourier transform infrared spectroscopy and fluorescence spectroscopy combined with functional microbial prediction analysis. The results showed that moderate aeration intensity (AR0.05, 0.05 L min−1 kg−1 DM) achieved a highly matured fertilizer with a humification index of 0.83 and a humic acid / fulvic acid (HA/FA) of 1.99. Partial least-squares path model demonstrated that environmental factors and humus-like substances were the two most critical factors to improve humification levels. According to the heterogeneous-2DCOS analysis, the biopolymers in DOM were preferentially decomposed into low molecular weight HA precursors through a series of biochemical reaction processes, and then formed the carbon skeleton of HA through condensation reactions, and finally polymerized into complex macromolecular HA. Bugbase analysis showed that AR0.05 treatment reduced 58.52 % of potentially pathogenic bacteria in the thermophilic phase. Moreover, functional bacterial communities in composting systems with AR0.05 were more favorable to drive the organic matter decomposition and HA formation. The mantel test revealed temperature and pH were key drivers in the composition of phenotypic and functional bacterial communities. This study provided unique insights into a deeper understanding of the aeration intensity on the humification pathways of kitchen waste composting.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research