Projection of Socio-Linguistic markers in a semantic context and its application to online social networks

Q1 Social Sciences Online Social Networks and Media Pub Date : 2023-09-01 DOI:10.1016/j.osnem.2023.100271
Tomaso Erseghe , Leonardo Badia , Lejla Džanko , Magdalena Formanowicz , Jan Nikadon , Caterina Suitner
{"title":"Projection of Socio-Linguistic markers in a semantic context and its application to online social networks","authors":"Tomaso Erseghe ,&nbsp;Leonardo Badia ,&nbsp;Lejla Džanko ,&nbsp;Magdalena Formanowicz ,&nbsp;Jan Nikadon ,&nbsp;Caterina Suitner","doi":"10.1016/j.osnem.2023.100271","DOIUrl":null,"url":null,"abstract":"<div><p>Relevant socio-psychological processes can be detected in social networks thanks to an analysis of linguistic markers that sheds light on the characteristics and dynamics of the social discourse. Usually, linguistic markers comprise a list of words representative of a given construct; however, this approach does not account for contextual interdependencies of words, which can amplify or diminish the relevance of a particular word. In this paper, we present and leverage a scalable method called PageRank-like marker projection (PLMP) that addresses this problem. Its rationale, inspired by PageRank, is meant to fully exploit the interdependencies in a semantic network to project markers from a social discourse level (tweets) to its semantic elements (words). We show how PLMP is able to associate markers with specific words from their semantic context, which allows for an even richer interpretation of the online sentiment. We demonstrate the effectiveness of PLMP in practice by considering specific instances of social discourse on Twitter for three exemplary calls to collective action.</p></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696423000307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Relevant socio-psychological processes can be detected in social networks thanks to an analysis of linguistic markers that sheds light on the characteristics and dynamics of the social discourse. Usually, linguistic markers comprise a list of words representative of a given construct; however, this approach does not account for contextual interdependencies of words, which can amplify or diminish the relevance of a particular word. In this paper, we present and leverage a scalable method called PageRank-like marker projection (PLMP) that addresses this problem. Its rationale, inspired by PageRank, is meant to fully exploit the interdependencies in a semantic network to project markers from a social discourse level (tweets) to its semantic elements (words). We show how PLMP is able to associate markers with specific words from their semantic context, which allows for an even richer interpretation of the online sentiment. We demonstrate the effectiveness of PLMP in practice by considering specific instances of social discourse on Twitter for three exemplary calls to collective action.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语义语境中社会语言标记的投射及其在在线社交网络中的应用
通过对语言标记的分析,可以在社交网络中检测到相关的社会心理过程,从而揭示社会话语的特征和动态。通常,语言标记包括代表给定结构的单词列表;然而,这种方法没有考虑到单词的上下文相关性,这可能会放大或降低特定单词的相关性。在本文中,我们提出并利用了一种称为类PageRank标记投影(PLMP)的可扩展方法来解决这个问题。其基本原理受到PageRank的启发,旨在充分利用语义网络中的相互依赖性,将标记从社会话语层面(推文)投射到其语义元素(单词)。我们展示了PLMP如何能够将标记与语义上下文中的特定单词相关联,从而对在线情绪进行更丰富的解释。我们通过考虑推特上社会话语的具体例子,展示了PLMP在实践中的有效性,这三个例子堪称集体行动的典范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
期刊最新文献
How does user-generated content on Social Media affect stock predictions? A case study on GameStop Measuring centralization of online platforms through size and interconnection of communities Crowdsourcing the Mitigation of disinformation and misinformation: The case of spontaneous community-based moderation on Reddit GASCOM: Graph-based Attentive Semantic Context Modeling for Online Conversation Understanding The influence of coordinated behavior on toxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1