Theories and applications of earthquake-induced gravity variation: Advances and perspectives

IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Earthquake Science Pub Date : 2023-10-01 DOI:10.1016/j.eqs.2023.09.001
He Tang , Wenke Sun
{"title":"Theories and applications of earthquake-induced gravity variation: Advances and perspectives","authors":"He Tang ,&nbsp;Wenke Sun","doi":"10.1016/j.eqs.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Earthquake-induced gravity variation refers to changes in the earth’s gravity field associated with seismic activities. In recent years, development in the theories has greatly promoted seismic deformation research, laying a solid theoretical foundation for the interpretation and application of seismological gravity monitoring. Traditional terrestrial gravity measurements continue to play a significant role in studies of interseismic, co-seismic, and post-seismic gravity field variations. For instance, superconducting gravimeter networks can detect co-seismic gravity change at the sub-micro Gal level. At the same time, the successful launch of satellite gravity missions (e.g., the Gravity Recovery and Climate Experiment or GRACE) has also facilitated applied studies of the gravity variation associated with large earthquakes, and several remarkable breakthroughs have been achieved. The progress in gravity observation technologies (e.g., GRACE and superconducting gravimetry) and advances in the theories have jointly promoted seismic deformation studies and raised many new research topics. For example, superconducting gravimetry has played an important role in analyses of episodic tremor, slow-slip events, and interseismic strain patterns; the monitoring of transient gravity signals and related theories have provided a new perspective on earthquake early warning systems; the mass transport detected by the GRACE satellites several months before an earthquake has brought new insights into earthquake prediction methods; the use of artificial intelligence to automatically identify tiny gravity change signals is a new approach to accurate and rapid determination of earthquake magnitude and location. Overall, many significant breakthroughs have been made in recent years, in terms of the theory, application, and observation measures. This article summarizes the progress, with the aim of providing a reference for seismologists and geodetic researchers studying the phenomenon of gravity variation, advances in related theories and applications, and future research directions in this discipline.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"36 5","pages":"Pages 376-415"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451923000447","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Earthquake-induced gravity variation refers to changes in the earth’s gravity field associated with seismic activities. In recent years, development in the theories has greatly promoted seismic deformation research, laying a solid theoretical foundation for the interpretation and application of seismological gravity monitoring. Traditional terrestrial gravity measurements continue to play a significant role in studies of interseismic, co-seismic, and post-seismic gravity field variations. For instance, superconducting gravimeter networks can detect co-seismic gravity change at the sub-micro Gal level. At the same time, the successful launch of satellite gravity missions (e.g., the Gravity Recovery and Climate Experiment or GRACE) has also facilitated applied studies of the gravity variation associated with large earthquakes, and several remarkable breakthroughs have been achieved. The progress in gravity observation technologies (e.g., GRACE and superconducting gravimetry) and advances in the theories have jointly promoted seismic deformation studies and raised many new research topics. For example, superconducting gravimetry has played an important role in analyses of episodic tremor, slow-slip events, and interseismic strain patterns; the monitoring of transient gravity signals and related theories have provided a new perspective on earthquake early warning systems; the mass transport detected by the GRACE satellites several months before an earthquake has brought new insights into earthquake prediction methods; the use of artificial intelligence to automatically identify tiny gravity change signals is a new approach to accurate and rapid determination of earthquake magnitude and location. Overall, many significant breakthroughs have been made in recent years, in terms of the theory, application, and observation measures. This article summarizes the progress, with the aim of providing a reference for seismologists and geodetic researchers studying the phenomenon of gravity variation, advances in related theories and applications, and future research directions in this discipline.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地震重力变化的理论与应用:进展与展望
地震引起的重力变化是指与地震活动有关的地球重力场的变化。近年来,理论的发展极大地推动了地震形变研究,为地震重力监测的解释和应用奠定了坚实的理论基础。传统的地面重力测量在地震间、同震和地震后重力场变化的研究中继续发挥着重要作用。例如,超导重力仪网络可以检测亚微米Gal水平的同震重力变化。与此同时,卫星重力任务(如重力恢复和气候实验)的成功发射也促进了对与大地震有关的重力变化的应用研究,并取得了一些显著突破。重力观测技术(如GRACE和超导重力测量)的进步和理论的进步共同推动了地震变形研究,提出了许多新的研究课题。例如,超导重力测量在分析幕性震颤、慢滑事件和震间应变模式方面发挥了重要作用;瞬态重力信号的监测及其相关理论为地震预警系统提供了新的视角;GRACE卫星在地震发生前几个月探测到的物质传输为地震预测方法带来了新的见解;利用人工智能自动识别微小的重力变化信号是准确、快速确定地震震级和位置的一种新方法。总体而言,近年来在理论、应用和观测措施方面取得了许多重大突破。本文综述了这一进展,旨在为地震学家和大地测量研究人员研究重力变化现象、相关理论和应用的进展以及该学科未来的研究方向提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earthquake Science
Earthquake Science GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.10
自引率
8.30%
发文量
42
审稿时长
3 months
期刊介绍: Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration. The topics include, but not limited to, the following ● Seismic sources of all kinds. ● Earth structure at all scales. ● Seismotectonics. ● New methods and theoretical seismology. ● Strong ground motion. ● Seismic phenomena of all kinds. ● Seismic hazards, earthquake forecasting and prediction. ● Seismic instrumentation. ● Significant recent or past seismic events. ● Documentation of recent seismic events or important observations. ● Descriptions of field deployments, new methods, and available software tools. The types of manuscripts include the following. There is no length requirement, except for the Short Notes. 【Articles】 Original contributions that have not been published elsewhere. 【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages. 【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications. 【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals. 【Toolboxes】 Descriptions of novel numerical methods and associated computer codes. 【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models). 【Opinions】Views on important topics and future directions in earthquake science. 【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.
期刊最新文献
Structural similarity of lithospheric velocity models of Chinese mainland Assessing the effects of model parameter assumptions on surface-wave inversion results Evaluation of crustal deformation and associated strong motions induced by the 2022 Paktika earthquake, Afghanistan Mechanisms to explain soil liquefaction triggering, development, and persistence during an earthquake An illustrated guide to: Parsimonious multi-scale full-waveform inversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1