S. Eslami , M. Bahrami , M. Zandi , J. Fakhar , R. Gavagsaz-Ghoachani , Y. Noorollahi , M. Phattanasak , B. Nahid-Mobarakeh
{"title":"Performance investigation and comparison of polypropylene to Nafion117 as the membrane of a dual-chamber microbial fuel cell","authors":"S. Eslami , M. Bahrami , M. Zandi , J. Fakhar , R. Gavagsaz-Ghoachani , Y. Noorollahi , M. Phattanasak , B. Nahid-Mobarakeh","doi":"10.1016/j.clema.2023.100184","DOIUrl":null,"url":null,"abstract":"<div><p>The high cost and recycling issues of common separators as the main components of Microbial fuel cells (MFCs) have slowed down the development of MFCs recently. In this paper, a polypropylene membrane is proposed as an inexpensive membrane that can be recycled with lower environmental impacts. An experiment is performed in a dual-chamber microbial fuel cell to investigate and compare the proposed membrane effectiveness to Nafion117. The dual-chamber MFC was used because of its ease of use. A mixture of microbes and glucose was fed to the cell during the experiment. The internal resistance and coulombic efficiency are calculated by measuring the circuit voltage, power density, and open-circuit voltage to monitor the performance. The maximum output voltage of 500 mV was attained at a resistance of 380 kΩ. Furthermore, the maximum output power density was 0.7 mW.m<sup>−2</sup>, which occurred for 3.3 mA.m<sup>−2</sup>.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"8 ","pages":"Article 100184"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397623000175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The high cost and recycling issues of common separators as the main components of Microbial fuel cells (MFCs) have slowed down the development of MFCs recently. In this paper, a polypropylene membrane is proposed as an inexpensive membrane that can be recycled with lower environmental impacts. An experiment is performed in a dual-chamber microbial fuel cell to investigate and compare the proposed membrane effectiveness to Nafion117. The dual-chamber MFC was used because of its ease of use. A mixture of microbes and glucose was fed to the cell during the experiment. The internal resistance and coulombic efficiency are calculated by measuring the circuit voltage, power density, and open-circuit voltage to monitor the performance. The maximum output voltage of 500 mV was attained at a resistance of 380 kΩ. Furthermore, the maximum output power density was 0.7 mW.m−2, which occurred for 3.3 mA.m−2.