Spatio-temporal variations of shallow seismic velocity changes in Salton Sea Geothermal Field, California in response to large regional earthquakes and long-term geothermal activities
Chengyuan Zhang , Zhigang Peng , Xiaoyan Liu , Chenyu Li
{"title":"Spatio-temporal variations of shallow seismic velocity changes in Salton Sea Geothermal Field, California in response to large regional earthquakes and long-term geothermal activities","authors":"Chengyuan Zhang , Zhigang Peng , Xiaoyan Liu , Chenyu Li","doi":"10.1016/j.eqrea.2022.100178","DOIUrl":null,"url":null,"abstract":"<div><p>We measure spatio-temporal variations of seismic velocity changes in Salton Sea Geothermal Field, California based on cross correlations of daily seismic traces recorded by a borehole seismic network from December 2007 to January 2014. We find clear co-seismic velocity reductions during the 2010 <em>M</em> 7.2 El Mayor–Cucapah, Mexico earthquake at ∼100 km further south, followed by long-term recoveries. The co-seismic reductions are larger with longer post-seismic recoveries in higher frequency bands, indicating that material damage and healing process mostly occurred in the shallow depth. In addition, the co-seismic velocity reductions are larger for ray paths outside the active fluid injection/extraction regions. The ray paths inside injection/extraction regions are associated with smaller co-seismic reductions, but subtle long-term velocity increases. We also build 3D transient water flow models based on monthly injection/extraction rates, and find correlations between several water flow parameters and co-seismic velocity reductions. We interpret the relative lack of co-seismic velocity changes within the geothermal region as unclogging of fracture network due to persistent fluid flows of geothermal production. The long-term velocity increase is likely associated with the ground water depletion and subsidence due to net production.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"3 2","pages":"Article 100178"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Research Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772467022000690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We measure spatio-temporal variations of seismic velocity changes in Salton Sea Geothermal Field, California based on cross correlations of daily seismic traces recorded by a borehole seismic network from December 2007 to January 2014. We find clear co-seismic velocity reductions during the 2010 M 7.2 El Mayor–Cucapah, Mexico earthquake at ∼100 km further south, followed by long-term recoveries. The co-seismic reductions are larger with longer post-seismic recoveries in higher frequency bands, indicating that material damage and healing process mostly occurred in the shallow depth. In addition, the co-seismic velocity reductions are larger for ray paths outside the active fluid injection/extraction regions. The ray paths inside injection/extraction regions are associated with smaller co-seismic reductions, but subtle long-term velocity increases. We also build 3D transient water flow models based on monthly injection/extraction rates, and find correlations between several water flow parameters and co-seismic velocity reductions. We interpret the relative lack of co-seismic velocity changes within the geothermal region as unclogging of fracture network due to persistent fluid flows of geothermal production. The long-term velocity increase is likely associated with the ground water depletion and subsidence due to net production.