Interface engineering of Fe-Co3N/CoP composite with N-doped C by using soybean: Fabrication of efficient electrocatalysts for oxygen evolution reaction
Longqing Gao , Xiumin Li , Chao Tang , Tianshuo Xie , Zhengkun Xie , Haimei Li , Guoqing Guan , Jie Liu , Keyong Tang
{"title":"Interface engineering of Fe-Co3N/CoP composite with N-doped C by using soybean: Fabrication of efficient electrocatalysts for oxygen evolution reaction","authors":"Longqing Gao , Xiumin Li , Chao Tang , Tianshuo Xie , Zhengkun Xie , Haimei Li , Guoqing Guan , Jie Liu , Keyong Tang","doi":"10.1016/j.crcon.2022.12.005","DOIUrl":null,"url":null,"abstract":"<div><p>Soybean can serve as an efficient carbon and nitrogen source for <em>in-situ</em> fabrication of efficient composite electrocatalysts with conductive nitrogen-doped carbon (N-C) material. In this study, the iron-doped cobalt nitride/phosphide (Fe-Co<sub>3</sub>N/CoP) nanosheet was composited with a conductive N-C material by using soybean as C and N source, as well as NH<sub>3</sub> as additional nitrogen source. During the nitridation process of Fe-Co<sub>3</sub>N, N-C bond was formed as a newly generated Co(Fe)-N-C active sites. Therefore, it fabricates a good microscopic contact interface between the catalyst and carbon material for charge transfer. Besides, the introduction of Fe-CoP by partially phosphating Fe-Co<sub>3</sub>N further improved the OER activity due to the high catalytic activity of Co sites with high valence state. As a result, the obtained electrocatalyst exhibited overpotentials as low as 285 and 390 mV for supporting 10 and 100 mA/cm<sup>−2</sup> current densities. This work indicates that the design of materials with good interfaces could be an effective approach for the preparation of electrocatalysts for water electrolysis.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"6 2","pages":"Pages 98-105"},"PeriodicalIF":6.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913322000734","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Soybean can serve as an efficient carbon and nitrogen source for in-situ fabrication of efficient composite electrocatalysts with conductive nitrogen-doped carbon (N-C) material. In this study, the iron-doped cobalt nitride/phosphide (Fe-Co3N/CoP) nanosheet was composited with a conductive N-C material by using soybean as C and N source, as well as NH3 as additional nitrogen source. During the nitridation process of Fe-Co3N, N-C bond was formed as a newly generated Co(Fe)-N-C active sites. Therefore, it fabricates a good microscopic contact interface between the catalyst and carbon material for charge transfer. Besides, the introduction of Fe-CoP by partially phosphating Fe-Co3N further improved the OER activity due to the high catalytic activity of Co sites with high valence state. As a result, the obtained electrocatalyst exhibited overpotentials as low as 285 and 390 mV for supporting 10 and 100 mA/cm−2 current densities. This work indicates that the design of materials with good interfaces could be an effective approach for the preparation of electrocatalysts for water electrolysis.
期刊介绍:
Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.