{"title":"An assessment of air-sea CO2 flux parameterizations during tropical cyclones in the Bay of Bengal","authors":"Trishneeta Bhattacharya , Kunal Chakraborty , Sriram Anthoor , Prasanna Kanti Ghoshal","doi":"10.1016/j.dynatmoce.2023.101390","DOIUrl":null,"url":null,"abstract":"<div><p>The exchange of air-sea CO<sub>2</sub> plays a significant role in regulating the Earth’s climate. The errors associated with the estimations of air-sea CO<sub>2</sub><span> fluxes during extreme transient events like tropical cyclones (TCs) are important for climate research. In this study, we assess the estimates of CO</span><sub>2</sub> gas transfer velocity and the corresponding air-sea flux derived by employing five wind-dependent and two wave-dependent parameterizations for eight TCs in the Bay of Bengal using mooring observations and reanalysis datasets. To start with, we analyze drag coefficient (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span>) and associated frictional velocity (<span><math><msup><mrow><mi>u</mi></mrow><mrow><mo>*</mo></mrow></msup></math></span><span>) derived from two globally very commonly used bulk flux algorithms, COARE 3.0 and the updated version COARE 3.6, with the estimates from wind-wave tank experiments for moderate and high wind speeds for all TCs. The analysis indicates that COARE 3.6 provides the best estimate of drag coefficient. Further, we find that the wave-dependent parameterization by Woolf (2005) provides the best estimates of CO</span><sub>2</sub> gas transfer velocity compared to existing estimates of laboratory-based wind-wave tank experiments for high winds. Among all wind-only parameterizations, the hybrid parameterization proposed by Nightingale et al. (2000) performs best for high winds. We find that for winds < 20 m/s, the resultant fluxes of CO<sub>2</sub> estimated using these seven parameterizations vary within 5 mmol CO<sub>2</sub> m<sup>-2</sup> d<sup>-1</sup>. However, for winds > 20 m/s, the difference between wind- and wave-parameterized fluxes are significant (∼50 mmol CO<sub>2</sub> m<sup>-2</sup> d<sup>-1</sup>). The percentage of variation in CO<sub>2</sub> flux explained by transfer velocity (difference in sea and air pCO<sub>2</sub>) during TC conditions is nearly 78 (15)%.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"103 ","pages":"Article 101390"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026523000416","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The exchange of air-sea CO2 plays a significant role in regulating the Earth’s climate. The errors associated with the estimations of air-sea CO2 fluxes during extreme transient events like tropical cyclones (TCs) are important for climate research. In this study, we assess the estimates of CO2 gas transfer velocity and the corresponding air-sea flux derived by employing five wind-dependent and two wave-dependent parameterizations for eight TCs in the Bay of Bengal using mooring observations and reanalysis datasets. To start with, we analyze drag coefficient () and associated frictional velocity () derived from two globally very commonly used bulk flux algorithms, COARE 3.0 and the updated version COARE 3.6, with the estimates from wind-wave tank experiments for moderate and high wind speeds for all TCs. The analysis indicates that COARE 3.6 provides the best estimate of drag coefficient. Further, we find that the wave-dependent parameterization by Woolf (2005) provides the best estimates of CO2 gas transfer velocity compared to existing estimates of laboratory-based wind-wave tank experiments for high winds. Among all wind-only parameterizations, the hybrid parameterization proposed by Nightingale et al. (2000) performs best for high winds. We find that for winds < 20 m/s, the resultant fluxes of CO2 estimated using these seven parameterizations vary within 5 mmol CO2 m-2 d-1. However, for winds > 20 m/s, the difference between wind- and wave-parameterized fluxes are significant (∼50 mmol CO2 m-2 d-1). The percentage of variation in CO2 flux explained by transfer velocity (difference in sea and air pCO2) during TC conditions is nearly 78 (15)%.
期刊介绍:
Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate.
Authors are invited to submit articles, short contributions or scholarly reviews in the following areas:
•Dynamic meteorology
•Physical oceanography
•Geophysical fluid dynamics
•Climate variability and climate change
•Atmosphere-ocean-biosphere-cryosphere interactions
•Prediction and predictability
•Scale interactions
Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.