A predictive chance constraint rebalancing approach to mobility-on-demand services

IF 12.5 Q1 TRANSPORTATION Communications in Transportation Research Pub Date : 2023-07-19 DOI:10.1016/j.commtr.2023.100097
Sten Elling Tingstad Jacobsen , Anders Lindman , Balázs Kulcsár
{"title":"A predictive chance constraint rebalancing approach to mobility-on-demand services","authors":"Sten Elling Tingstad Jacobsen ,&nbsp;Anders Lindman ,&nbsp;Balázs Kulcsár","doi":"10.1016/j.commtr.2023.100097","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers the problem of supply-demand imbalances in Mobility-on-Demand (MoD) services. These imbalances occur due to uneven stochastic travel demand and can be mitigated by proactively rebalancing empty vehicles to areas where the demand is high. To achieve this, we propose a method that takes into account uncertainties of predicted travel demand while minimizing pick-up time and rebalance mileage for autonomous MoD ride-hailing. More precisely, first travel demand is predicted using Gaussian Process Regression (GPR) which provides uncertainty bounds on the prediction. We then formulate a stochastic model predictive control (MPC) for the autonomous ride-hailing service and integrate the demand predictions with uncertainty bounds. In order to guarantee constraint satisfaction in the optimization under estimated stochastic demand prediction, we employ a probabilistic constraining method with user-defined confidence interval, using Chance Constrained MPC (CCMPC). The benefits of the proposed method are twofold. First, travel demand uncertainty prediction from data can naturally be embedded into the MoD optimization framework, allowing us to keep the imbalance at each station below a certain threshold with a user-defined probability. Second, CCMPC can be relaxed into a Mixed-Integer-Linear-Program (MILP) and the MILP can be solved as a corresponding Linear-Program, which always admits an integral solution. Our transportation simulations show that by tuning the confidence bound on the chance constraint, close to optimal oracle performance can be achieved, with a median customer wait time reduction of 4% compared to using only the mean prediction of the GPR.</p></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":null,"pages":null},"PeriodicalIF":12.5000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424723000082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the problem of supply-demand imbalances in Mobility-on-Demand (MoD) services. These imbalances occur due to uneven stochastic travel demand and can be mitigated by proactively rebalancing empty vehicles to areas where the demand is high. To achieve this, we propose a method that takes into account uncertainties of predicted travel demand while minimizing pick-up time and rebalance mileage for autonomous MoD ride-hailing. More precisely, first travel demand is predicted using Gaussian Process Regression (GPR) which provides uncertainty bounds on the prediction. We then formulate a stochastic model predictive control (MPC) for the autonomous ride-hailing service and integrate the demand predictions with uncertainty bounds. In order to guarantee constraint satisfaction in the optimization under estimated stochastic demand prediction, we employ a probabilistic constraining method with user-defined confidence interval, using Chance Constrained MPC (CCMPC). The benefits of the proposed method are twofold. First, travel demand uncertainty prediction from data can naturally be embedded into the MoD optimization framework, allowing us to keep the imbalance at each station below a certain threshold with a user-defined probability. Second, CCMPC can be relaxed into a Mixed-Integer-Linear-Program (MILP) and the MILP can be solved as a corresponding Linear-Program, which always admits an integral solution. Our transportation simulations show that by tuning the confidence bound on the chance constraint, close to optimal oracle performance can be achieved, with a median customer wait time reduction of 4% compared to using only the mean prediction of the GPR.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
按需出行服务的预测机会约束再平衡方法
本文研究了移动点播(MoD)服务中的供需失衡问题。这些不平衡是由于不均衡的随机旅行需求造成的,可以通过主动将空车重新平衡到需求高的地区来缓解。为了实现这一点,我们提出了一种方法,该方法考虑了预测出行需求的不确定性,同时最大限度地减少接送时间,并重新平衡自动叫车的里程。更准确地说,首次出行需求是使用高斯过程回归(GPR)进行预测的,该回归为预测提供了不确定性边界。然后,我们为自动叫车服务制定了一个随机模型预测控制(MPC),并将需求预测与不确定性边界相结合。为了保证在估计随机需求预测下优化中的约束满足性,我们使用了一种具有用户定义置信区间的概率约束方法,即Chance约束MPC(CCMPC)。所提出的方法有两个好处。首先,数据中的出行需求不确定性预测可以自然嵌入国防部优化框架,使我们能够以用户定义的概率将每个车站的不平衡保持在某个阈值以下。其次,CCMPC可以被松弛为混合整数线性规划(MILP),并且MILP可以被求解为相应的线性规划,该线性规划总是允许积分解。我们的运输模拟表明,通过调整机会约束的置信区间,可以实现接近最优的预言机性能,与仅使用GPR的平均预测相比,客户等待时间中值减少了4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
期刊最新文献
Harnessing multimodal large language models for traffic knowledge graph generation and decision-making Controllability test for nonlinear datatic systems Intelligent vehicle platooning transit A multi-functional simulation platform for on-demand ride service operations Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1