Biomedical applications of Janus membrane

Shutong Qian , Binfan Zhao , Jiayi Mao , Zhimo Liu , Qiuyu Zhao , Bolun Lu , Xiyuan Mao , Liucheng Zhang , Liying Cheng , Yuguang Zhang , Wenguo Cui , Xiaoming Sun
{"title":"Biomedical applications of Janus membrane","authors":"Shutong Qian ,&nbsp;Binfan Zhao ,&nbsp;Jiayi Mao ,&nbsp;Zhimo Liu ,&nbsp;Qiuyu Zhao ,&nbsp;Bolun Lu ,&nbsp;Xiyuan Mao ,&nbsp;Liucheng Zhang ,&nbsp;Liying Cheng ,&nbsp;Yuguang Zhang ,&nbsp;Wenguo Cui ,&nbsp;Xiaoming Sun","doi":"10.1016/j.bmt.2022.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>The traditional membrane with single structure cannot satisfy complex clinical applications. Inspired by lotus leaf, a novel structure Janus membrane has achieved more attention recently. Janus membrane is a membrane structure which has two faces with opposite properties. This special structure endows it with asymmetric surface wettability, which can provide an intrinsic driving force to transport along a specified direction, thus achieve unidirectional liquid transport and selective liquid separation. Janus membrane has a promising future, and has been widely used in chemical fields such as self-cleaning, oil/water separation, mist collection, and desalination, while less studied in biomedical field. In this review, the biomedical applications especially in different stages of wound healing process, current challenges in fabrication process and future perspectives of Janus membranes in practical applications under different Janus models, such as hemostasis, bone regeneration, blood cell isolation and gastric mycosal defect will be discussed. It is expected that this unique structure can provide a good therapy prospect in biomedical fields.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"2 ","pages":"Pages 58-69"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949723X22000058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The traditional membrane with single structure cannot satisfy complex clinical applications. Inspired by lotus leaf, a novel structure Janus membrane has achieved more attention recently. Janus membrane is a membrane structure which has two faces with opposite properties. This special structure endows it with asymmetric surface wettability, which can provide an intrinsic driving force to transport along a specified direction, thus achieve unidirectional liquid transport and selective liquid separation. Janus membrane has a promising future, and has been widely used in chemical fields such as self-cleaning, oil/water separation, mist collection, and desalination, while less studied in biomedical field. In this review, the biomedical applications especially in different stages of wound healing process, current challenges in fabrication process and future perspectives of Janus membranes in practical applications under different Janus models, such as hemostasis, bone regeneration, blood cell isolation and gastric mycosal defect will be discussed. It is expected that this unique structure can provide a good therapy prospect in biomedical fields.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Janus膜的生物医学应用
传统的单一结构的膜不能满足复杂的临床应用。受荷叶的启发,一种新型结构的Janus膜最近受到了更多的关注。Janus膜是一种具有两个性质相反的表面的膜结构。这种特殊的结构赋予了它不对称的表面润湿性,可以提供沿特定方向传输的内在驱动力,从而实现单向液体传输和选择性液体分离。Janus膜具有广阔的应用前景,已广泛应用于自清洁、油水分离、薄雾收集和脱盐等化学领域,而在生物医学领域的研究较少。在这篇综述中,将讨论Janus膜的生物医学应用,特别是在伤口愈合过程的不同阶段,目前在制造过程中面临的挑战,以及在不同Janus模型下的实际应用前景,如止血、骨再生、血细胞分离和胃分枝杆菌缺损。期望这种独特的结构能够在生物医学领域提供良好的治疗前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
Ordered micro-nano structured biomaterials for wound healing HMS-TENet: A hierarchical multi-scale topological enhanced network based on EEG and EOG for driver vigilance estimation D2 receptor antagonist raclopride regulates glutamatergic neuronal activity in the pedunculopontine nucleus in a rat model of Parkinson's disease Electrospinning drug-loaded polycaprolactone/polycaprolactone-gelatin multi-functional bilayer nanofibers composite scaffold for postoperative wound healing of cutaneous squamous cell carcinoma HFF-Net: A hybrid convolutional neural network for diabetic retinopathy screening and grading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1