Danqing Huang, Jinglin Wang, Junyi Che, Baojie Wen, Wentao Kong
{"title":"Ultrasound-responsive microparticles from droplet microfluidics","authors":"Danqing Huang, Jinglin Wang, Junyi Che, Baojie Wen, Wentao Kong","doi":"10.1016/j.bmt.2022.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasound (US)-responsive microparticles show broad potential in controlled drug delivery systems. Compare with the traditional micron-scale material fabrication methods, capillary microfluidic technology features superior advantages in large-scale production, batch-to-batch similarity, high encapsulation efficiency, low cost, and so on. The excellent maneuverability and customizability of the capillary microfluidic devices allow the production of microparticles with various functionalities and fine-tuned chemical compartments. Moreover, the flexible regulation of the particle size and core-shell ratio can be easily realized by modulating the capillary orifices and flow rates of microfluidic channels. In this review, we introduce the fabrication of US-responsive microparticles with specific core-shell structures via capillary microfluidic methods, from single emulsion to triple emulsions. Then, we address some particular examples, where the drug delivery and US-triggered cargo release capacity of these microfluidic microparticles are demonstrated. Finally, we conclude the advanced achievements of the US-responsive microfluidic microparticles, summarize the obstacles to the development of this interdisciplinary field, and prospect their future applications.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"1 ","pages":"Pages 1-9"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949723X22000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Ultrasound (US)-responsive microparticles show broad potential in controlled drug delivery systems. Compare with the traditional micron-scale material fabrication methods, capillary microfluidic technology features superior advantages in large-scale production, batch-to-batch similarity, high encapsulation efficiency, low cost, and so on. The excellent maneuverability and customizability of the capillary microfluidic devices allow the production of microparticles with various functionalities and fine-tuned chemical compartments. Moreover, the flexible regulation of the particle size and core-shell ratio can be easily realized by modulating the capillary orifices and flow rates of microfluidic channels. In this review, we introduce the fabrication of US-responsive microparticles with specific core-shell structures via capillary microfluidic methods, from single emulsion to triple emulsions. Then, we address some particular examples, where the drug delivery and US-triggered cargo release capacity of these microfluidic microparticles are demonstrated. Finally, we conclude the advanced achievements of the US-responsive microfluidic microparticles, summarize the obstacles to the development of this interdisciplinary field, and prospect their future applications.